

Propuesta de método de prueba de módulo dinámico en mezclas asfálticas para México

Horacio Delgado Alamilla José A. Gómez López Mayra Flores Flores

Publicación Técnica No. 507 Sanfandila, Qro, 2017

SECRETARÍA DE COMUNICACIONES Y TRANSPORTES INSTITUTO MEXICANO DEL TRANSPORTE

Propuesta de método de prueba de módulo dinámico en mezclas asfálticas para México

Publicación Técnica No. 507 Sanfandila, Qro, 2017

Esta investigación fue realizada en la Coordinación de Infraestructura del Instituto Mexicano del Transporte, por Dr. Horacio Delgado Alamilla, M.I. José Antonio Gómez López y M.C. Mayra Flores Flores, con la colaboración del Téc. Alfonso Galicia Valencia.

Esta investigación es el producto final del proyecto de investigación interna II 19/16 "Validación del procedimiento de ensayo de módulo dinámico en mezclas asfálticas".

Contenido

Ír	ndice (de fiç	guras	iv
Ír	ndice (de ta	ablas	V
R	Resum	en		vi
Α	bstrac	ct		vii
R	Resum	en e	ejecutivo	viii
1	An	tece	dentes	3
	1.1	Mó	dulo dinámico	3
	1.2	Pri	ncipio de superposición tiempo-temperatura	4
	1.2	2.1	Medio continuo	5
	1.2	2.2	Isotropía	5
	1.2	2.3	Viscoelasticidad lineal-linealidad-termosensible	5
	1.3	Pro	opiedades viscoelásticas de un material asfaltico	6
	1.4	Ens	sayo de módulo dinámico	7
	1.5	Pri	ncipales representaciones gráficas de E*	7
	1.5	5.1	Curvas isotérmicas	7
	1.5	5.2	Plano Cole-Cole (o plano complejo)	9
	1.5	5.3	Espacio de Black	9
	1.5	5.4	Curva maestra	10
2	Exp	perin	mentación y resultados	13
	2.1	Vei	rificación del funcionamiento del equipo de ensayo	15
	2.2	Ens	sayo de módulo dinámico AASHTO T 342-11	16
	2.3	Pro	ocedimiento IMT	17

3	Aná	alisis de resultados	19
	3.1	Verificación de funcionamiento del equipo	19
		Eliminar la frecuencia de 25 Hz y reducir el rango de temperaturas	
	3.3	Cambiar el orden de las frecuencias de ensayo	23
	3.4	Plano Cole-Cole y diagrama de Black	28
4	Cor	nclusiones	35
В	ibliogr	afía	.37
A	nexo ′	Propuesta de método de prueba para determinar el módulo dinámico mezclas asfálticas para México	
Α	nexo 2	2. Resultados de las pruebas de módulo dinámico	.56

Índice de figuras

Figura 1.1	Gráfica esfuerzo-deformación durante un ensayo de módulo dinámico (Delgado Alamilla, 2013)
Figura 1.2	Comportamiento típico de una mezcla asfáltica a temperatura controlada, (ε) deformación – (N) Número de repeticiones de carga (Di Benedetto H, 1990)
Figura1.3	Curvas isotérmicas del módulo dinámico (a) y ángulo de fase (b) 8
Figura 1.4	Gráfica de plano de Cole-Cole9
Figura 1.5	Gráfica de espacio de Black10
Figura 1.6	Construcción de la curva maestra 11
Figura 1.7	Curva maestra de módulo dinámico
Figura 2.1	Granulometría de los especímenes de ensayo 14
Figura 2.2	Probeta patrón para verificar el funcionamiento del equipo de ensayo.
Figura 3.1	Curvas isotérmicas de la probeta patrón
Figura 3.2	Curva maestra de módulo dinámico y ángulo de fase, probeta patrón 20
Figura 3.3	Curva maestra de módulo dinámico (E*) y ángulo de fase (δ), espécimen 11721
Figura 3.4	Curva maestra de módulo dinámico (E*) y ángulo de fase (δ), espécimen 11721
Figura 3.5	Plano Cole-Ccole de los ensayos realizados con diferentes órdenes de frecuencias
Figura 3.6	Grafica de Black de los ensayos realizados con diferentes órdenes de frecuencias
Figura 3.7	Curva maestra de módulo dinámico y ángulo de fase de los ensayos realizados con diferentes órdenes de frecuencias
Figura 3.8	Valores de a⊤25
Figura 3.9	Modelo reológico 2S2P1D25

•	Calibración del modelo 2S2P1D, a partir de la gráfica Cole-Cole (Ola 003)	
Figura 3.11	Resultado de ensayo vs Calibración del modelo 2S2P1D	. 27
Figura 3.13	Curva maestra de módulo dinámico	. 29
Figura 3.14	Curva maestra del ángulo de fase comparando tres laboratorios	. 30
Figura 3.15	Plano Cole-Cole	. 31
Figura 3.16	Diagrama de Black	. 31
Figura 3.17	Curva maestra de modulo dinámico del laboratorio IMT	. 32
Figura 3.18	Diagrama de Black de los ensayos del laboratorio IMT	. 33
Figura 3.19	Plano Cole-Cole de los ensayos del laboratorio IMT	. 34

Índice de tablas

Tabla 2.1	Características de los especímenes ensayados	. 15
Tabla 3.1	Indicadores de calidad de los datos	. 22
Tabla 3.2	Evaluación de la calidad de los datos a 54°C y 40°C	. 22
Tabla 3.3	Temperaturas y orden de frecuencias usadas para realizar los ensa	-
Tabla 3.4	Resultados de calibración del modelo 2S2P1D	. 27

Sinopsis

En México, está en proceso la implementación del ensayo de módulo dinámico para el diseño de mezclas asfálticas de alto desempeño. El Laboratorio de asfaltos y mezclas asfálticas del Instituto Mexicano del Transporte (IMT) cuenta con el equipo para realizar el ensayo conforme al método de prueba AASHTO T 342. En las pruebas realizadas se ha detectado que algunos de los requerimientos de dicha norma son inadecuados.

El presente estudio tiene como objetivo verificar si el cambio en el orden de las frecuencias y en el rango e intervalos de temperaturas definidas en la norma AASHTO T 342 no afecta los parámetros mecánicos determinados con el ensayo.

Se realizaron ensayos de modulo dinámico conforme a la norma AASHTO T 342-11 y de acuerdo con la propuesta del IMT.

Los resultados fueron analizados por medio de curvas isotérmicas, plano Cole-Cole, diagrama de Black y curva maestra. De este trabajo se concluye que el rango y los intervalos de temperaturas de ensayo (-10,0,10,20,30 y 40°C), así como el orden de las frecuencias (0.1,0.5,1,5 y 10 Hz) propuesto por el Laboratorio de asfaltos y mezclas asfálticas del IMT, no afectan los resultados del ensayo de módulo dinámico.

Abstract

In Mexico, it is in process the implementation of the dynamic module test for the design of high performance asphalt mixtures. The asphalt and asphalt mixtures laboratory of the Mexican Institute of Transportation (IMT) has the equipment to perform the test according to the test method AASHTO T 342. In the tests carried out it has been detected that some of the requirements of said standard are inadequate.

The objective of this study is to verify if the change in the order of the frequencies and in the range and temperature ranges defined in the AASHTO T 342 standard does not affect the mechanical parameters determined with the test

Dynamic module tests were performed in accordance with the AASHTO T 342-11 standard and the IMT proposal.

The results were analyzed by means of isothermal curves, Cole-Cole plane, Black diagram and master curve. From this work it is concluded that the range and intervals of test temperatures (-10,0,10,20,30 and 40°C), as well as the order of the frequencies (0.1,0.5,1,5 and 10 Hz) proposed by the asphalt and asphalt mixtures laboratory of IMT does not affect the results of the dynamic module test.

Propuesta de método de prueba de módulo dinámico en mezclas asfálticas _l	para México

Resumen ejecutivo

El módulo dinámico es una propiedad mecánica fundamental para el diseño de un pavimento asfáltico; esta propiedad define las características de la respuesta a la deformación de la mezcla asfáltica, en función de la temperatura y velocidad de aplicación de la carga.

Esta propiedad es determinada en el laboratorio, por medio de ensayos de compresión axial en carga cíclica realizado a diferentes temperaturas y frecuencias. Las frecuencias representan la velocidad de operación de los vehículos y las temperaturas, a las que puede estar sujeto el pavimento. La variación de las propiedades dinámicas se da principalmente por el cambio de temperatura, un aumento de esta genera una disminución del módulo dinámico mientras que un aumento de la frecuencia de carga genera valores más altos de módulo dinámico.

En Estados Unidos, la norma utilizada para ejecutar el ensayo es la AASHTO T 342, que señala realizar la prueba a las temperaturas de -10, 4, 21,37 y 54°C y frecuencias de carga de 0.1, 0.5, 1.0, 5, 10 y 25 Hz; comenzando de las temperaturas bajas a altas y de frecuencias altas a bajas, y aplicando un determinado número de ciclos dependiendo de la frecuencia de ensayo; esto con la finalidad de que se acumule la menor cantidad de deformación permanente en el espécimen.

En México, está en proceso la implementación del ensayo de módulo dinámico para el diseño de mezclas asfálticas de alto desempeño. En el Laboratorio de asfaltos y mezclas asfálticas del Instituto Mexicano del Transporte (IMT), el equipo para realizar el ensayo fue adquirido en el 2012; y a la fecha se han realizado ensayos siguiendo el procedimiento de prueba de la norma AASHTO T 342; durante la ejecución del ensayo han surgido problemas en la frecuencia de 25 Hz, y en el análisis de resultados se ha detectado mucha dispersión para las temperaturas altas del ensayo.

El análisis de resultados del ensayo de módulo dinámico es realizado principalmente a través de la curva maestra construida a partir de los valores del módulo dinámico y las frecuencias de ensayo; sin embargo, existen otras representaciones como el plano Cole-Cole y el diagrama de Black; que complementan el análisis del desempeño de la mezcla, pero que no son muy usadas.

Para construir la curva maestra se hace uso del principio de superposición tiempotemperatura. Este principio es empleado para determinar las propiedades mecánicas dependientes de la temperatura de materiales viscoelásticos lineales de propiedades conocidas a una temperatura de referencia. Considera que el material tiene un comportamiento termosensible; es decir, que todas las curvas isotérmicas tienen la misma ley de variación tiempo-temperatura.

Para construirla, es necesario realizar ensayos de laboratorio a diferentes temperaturas y frecuencias; luego, cada isoterma es trasladada paralelamente al eje de las abscisas, con respecto a la isoterma de referencia (T_R) , para una temperatura seleccionada, hasta tener una superposición de los puntos de todas las isotermas. La magnitud de la traslación de cada isoterma con respecto a T_R , se denomina factor de traslación (a_T) y es calculado usando la relación empírica de Williams-Landel-Ferry (WLF), entre otras.

Para aplicar el principio de superposición tiempo-temperatura la muestra debe ser homogénea, isotrópica y amorfa. El material debe ser viscoelástico lineal en el rango de deformaciones de interés. En este sentido, la mezcla asfáltica es considerada un medio continuo (homogéneo), isótropico, viscoelástico lineal y termosensible; y hay un rango de carga en el que su comportamiento es lineal (deformaciones pequeñas en un rango de 50-150 $\mu\epsilon$) y es allí donde se realizan los ensayos de módulo dinámico.

En este estudio se realizaron ensayos de modulo dinámico conforme a la norma AASHTO T 342-11, frecuencias de 25, 10, 5, 1 y 0.1 Hz y temperaturas de -10, 4, 21, 37 y 54°C; empezando con las frecuencias altas a bajas y temperaturas bajas a altas. También, se realizaron ensayos de acuerdo con la propuesta del IMT, frecuencias de 10, 5, 1, 0.5 y 0.1 Hz y temperaturas de -10, 0, 10, 20, 30 y 40 °C, comenzando con las frecuencias y temperaturas de bajas a altas.

Los resultados fueron analizados por medio de curvas isotérmicas, plano Cole-Cole, diagrama de Black y curva maestra. De este trabajo se concluye que el rango y los intervalos de temperaturas de ensayo (-10,0,10,20,30 y 40°C), así como el orden de las frecuencias (0.1,0.5,1,5 y 10 Hz) propuesto por el Laboratorio de asfaltos y mezclas asfálticas del IMT no afecta los resultados del ensayo de módulo dinámico.

Introducción

El módulo dinámico es una propiedad mecánica fundamental para el diseño de un pavimento asfáltico; esta propiedad define las propiedades viscoelásticas lineales de la mezcla asfáltica, en función de la temperatura y velocidad de aplicación de la carga y es un parámetro de entrada en la Guía de Diseño Empírico-Mecanicista de pavimentos (MEPDG) 2002. El objetivo del ensayo es determinar las propiedades viscoelásticas lineales de la mezcla asfáltica; y por esta razón la evaluación es realizada en un rango de deformaciones pequeñas (<100 micras).

Esta propiedad es determinada por medio de ensayos de laboratorio. La prueba de módulo dinámico, $|E^*|$, es un ensayo de compresión axial en carga cíclica realizado a diferentes temperaturas y frecuencias. Las frecuencias representan la velocidad de operación de los vehículos y las temperaturas, a las que puede estar sujeto el pavimento. La variación de las propiedades dinámicas se da principalmente por el cambio de temperatura; un aumento de ésta genera una disminución del módulo dinámico, mientras que un aumento de la frecuencia de carga genera valores más altos de módulo dinámico.

En Estados Unidos la norma utilizada para ejecutar el ensayo es la AASHTO T 342, la cual señala realizar el ensayo a las temperaturas de -10, 4, 21, 37 y 54°C y frecuencias de carga de 0.1, 0.5, 1.0, 5, 10 y 25 Hz comenzando de las temperaturas bajas a altas y de frecuencias altas a bajas, y aplicando un determinado número de ciclos dependiendo de la frecuencia de ensayo; esto con la finalidad de que se acumule la menor cantidad de deformación permanente en el espécimen.

En México, está en proceso la implementación del ensayo de módulo dinámico para el diseño de mezclas asfálticas de alto desempeño. En el Laboratorio de asfaltos y mezclas asfálticas del Instituto Mexicano del Transporte (IMT), el equipo para realizar el ensayo fue adquirido en el 2012 y desde entonces a la fecha las prácticas siguen el procedimiento de prueba de la norma AASHTO T 342; durante la ejecución del ensayo se ha tenido problemas en la frecuencia de 25 Hz, y en el análisis de resultados se ha detectado mucha dispersión para las temperaturas altas del ensayo.

El análisis de resultados del ensayo de módulo dinámico se realiza principalmente a través de la curva maestra, que se construye a partir de los valores del módulo dinámico y las frecuencias de ensayo; sin embargo, existen otras representaciones como el plano Cole-Cole y el diagrama de Black, que complementan el análisis del desempeño de la mezcla pero que no son muy usadas.

Esta investigación, permitirá contribuir al cumplimiento del objetivo 6 "Desarrollar integralmente y a largo plazo al sector con la creación y adaptación de tecnología y la generación de capacidades nacionales", del Programa Sectorial de Comunicaciones y Transportes¹; el que se encuentra alineado a los objetivos 3.5 "Hacer del desarrollo científico, tecnológico y la innovación pilares para el progreso

económico y social sostenible y 4.9 "Contar con una infraestructura de transporte que se refleje en menores costos para realizar actividad económica" del Plan Nacional de Desarrollo 2013-2018².

Por lo anterior, los objetivos de esta investigación son:

- Confirmar si el cambio de rango e intervalos de temperatura de ensayo no afecta los resultados.
- Verificar si el cambio en el orden de las frecuencias no afecta los resultados del ensayo.
- Mostrar la importancia de complementar el análisis del desempeño de la mezcla asfáltica por medio de representaciones graficas como el plano Cole-Cole y diagrama de Black.

Se realizaron ensayos de modulo dinámico de acuerdo con la norma AASHTO T 342-11, a las frecuencias de 25, 10, 5, 1 y 0.1 Hz y temperaturas de -10, 4, 21, 37 y 54°C; empezando con las frecuencias altas a bajas y temperaturas bajas a altas. También, se realizaron ensayos conforme con la propuesta del IMT, frecuencias de 10, 5, 1, 0.5 y 0.1 Hz y temperaturas de -10, 0, 10, 20, 30 y 40 °C, comenzando con las frecuencias y temperaturas de bajas a altas.

Los resultados fueron analizados por medio de curvas isotérmicas, plano Cole-Cole, diagrama de Black y curva maestra. De este trabajo se concluye que el rango (-10 a 40°C) e intervalos de temperaturas de ensayo (incrementos de 10°C) propuesto por el laboratorio de asfaltos y mezclas asfálticas del IMT no afecta los resultados del ensayo de módulo dinámico.

El presente documento está formado por tres capítulos. En el primer capítulo se abordan brevemente los antecedentes del módulo dinámico. El capítulo 2 se refiere a los resultados obtenidos de la experimentación y finalmente se presentan las conclusiones del presente trabajo.

¹ Programa Sectorial de Comunicaciones y Transportes, 2013-2018, pp.78

² Plan Nacional de Desarrollo 2013-2018, pp140

1 Antecedentes

1.1 Módulo dinámico

El módulo dinámico es el valor absoluto del módulo complejo que define las propiedades elásticas de un material de viscosidad lineal sometido a una carga sinusoidal (Leiva Fabricio, 2004).

El módulo dinámico es un número complejo que consta de dos partes; la parte real, la cual representa la rigidez (parte elástica) y la imaginaria que representa el amortiguamiento interno de los materiales (parte viscosa), (Huang, 1993) y es definido como la relación de la amplitud del esfuerzo sinusoidal máximo y la amplitud de la deformación sinusoidal máxima como sigue:

$$E^* = \frac{\sigma}{\varepsilon} \tag{1.1}$$

$$E^* = \frac{\sigma_0 e^{i\omega t}}{\varepsilon_0 e^{i(\omega t - \delta)}} = |E^*| e^{i\delta}$$
 (1.2)

donde

| E* | Módulo dinámico (valor absoluto del módulo complejo) del material

δ Ángulo de fase (o ángulo de desfase) del material

La respuesta de un material viscoelástico como la mezcla asfáltica en caliente, bajo carga sinusoidal, está fuera de fase con respecto a la carga aplicada; como es mostrado en la figura 1.

El retraso entre la señal de carga y deformación, es llamado ángulo de fase (δ) , y está relacionado con el modulo dinámico de la siguiente manera:

$$|E^*| = E_1 + iE_2 \tag{1.3}$$

donde

 E_1 Módulo de almacenamiento (parte elástica) = $|E^*|$ cos δ

 E_2 Módulo de perdida (parte viscosa) = $|E^*|$ sen δ

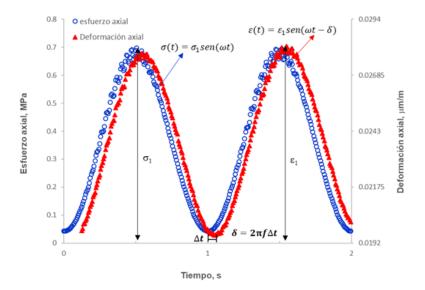


Figura 1.1 Gráfica esfuerzo-deformación durante un ensayo de módulo dinámico.

Un ángulo de fase (δ) de cero corresponde a un material puramente elástico, mientras que un δ =90° es asociado a un material puramente viscoso (newtoniano). Un ángulo de fase entre 0 y 90° corresponde a un material viscoelástico, tal es el caso de la mezcla asfáltica. Los valores típicos del ángulo de fase para la mayoría de las mezclas asfálticas están en un rango de 0 a 60° (Rowe et al, 2008).

1.2 Principio de superposición tiempotemperatura

El principio de superposición tiempo-temperatura es un concepto de física de polímeros. Este principio es usado para determinar las propiedades mecánicas dependientes de la temperatura de materiales viscoelásticos lineales de propiedades conocidas a una temperatura de referencia. Considera que el material tiene un comportamiento termosensible.

Para aplicar el principio de superposición tiempo-temperatura la muestra debe ser homogénea, isotrópica y amorfa. El material debe ser viscoelástico lineal en el rango de deformaciones de interés.

La mezcla asfáltica generalmente es considerada un medio continuo (homogéneo), isótropica, viscoelástica lineal y termosensible.

1.2.1 Medio continúo

A pesar de que la estructura granular le da un carácter heterogéneo a la mezcla asfáltica, se puede adoptar la hipótesis de medio continuo. En el caso específico de las probetas fabricadas en laboratorio, se deberá cumplir con una relación de 5 entre el tamaño máximo del agregado y el diámetro de la probeta.

1.2.2 Isotropía

La compactación de las mezclas asfálticas en campo le confiere al material una cierta anisotropía, debido a la orientación privilegiada del granular debida a la compactación. Además, un gradiente de densidad puede aparecer en el sentido del espesor de la carpeta asfáltica.

Para eliminar los efectos de esta anisotropía, generalmente los ensayos se realizan en probetas extraídas en el centro del pavimento. La extracción y las solicitaciones en laboratorio corresponden a la dirección de mayor deformación.

1.2.3 Viscoelasticidad lineal-linealidad-termosensible

La mezcla asfáltica adquiere las características viscoelásticas del asfalto. El cual es un material viscoelástico termosensible (termosusceptible). A temperaturas muy altas (cargas elevadas), el asfalto se comporta como un fluido viscoso sin capacidad de recuperación o de regresar a su estado original. A muy bajas temperaturas (cargas pequeñas), los asfaltos se comportan como un sólido elástico, el cual regresa a su estado original después de deformarse.

Las cargas reales aplicadas a los pavimentos se encuentran entre las dos cargas extremas expuestas; en estas condiciones, la mezcla asfáltica presenta un comportamiento fuertemente viscoelástico en donde la linealidad depende del nivel de deformación.

Algunos autores consideran que las mezclas asfálticas presentan un rango de solicitaciones en las que su comportamiento es lineal (pequeñas deformaciones) y en este rango se realizan los ensayos de módulo dinámico. Resultados experimentales muestran que amplitudes de deformación de hasta 10⁻⁴ m/m aseguran una respuesta lineal de la mezcla.

1.3 Propiedades viscoelásticas de un material asfaltico

Las propiedades mecánicas de un material asfáltico pueden ser simuladas en laboratorio considerando dos parámetros básicos como son la amplitud de deformación (|ɛ|) y el número de ciclos de carga aplicados (N), con los cuales es posible identificar cuatro clases de comportamientos principales (Delgado H, 2011):

- Para cargas que comprenden algunos cientos de ciclos y deformaciones «pequeñas» (<10-4), el comportamiento es considerado como viscoelástico lineal.
- Durante cargas de decenas de miles de ciclos y deformaciones «pequeñas» se desarrolla un tipo de daño, conocido como el fenómeno de «fatiga».
- Para un número pequeño de cargas y deformaciones importantes, el comportamiento observado es fuertemente no lineal.
- Cuando ciclos de esfuerzos (compresión o tensión) son aplicados a partir de un esfuerzo nulo, aparecen deformaciones irreversibles no despreciables para amplitudes de deformación cercanas de la ruptura. Su acumulación crea una «deformación permanente».

La figura 2.2 presenta un esquema de los comportamientos descritos en los puntos anteriores.

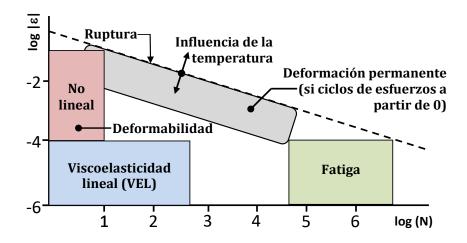


Figura 1.2 Comportamiento típico de una mezcla asfáltica a temperatura controlada, (ε) deformación – (N) Número de repeticiones de carga (Di Benedetto H, 1990).

1.4 Ensayo de módulo dinámico

El ensayo consiste en aplicar un esfuerzo de compresión axial sinusoidal (haversine) a un espécimen de concreto asfaltico, a una temperatura y frecuencia de carga determinada. El esfuerzo aplicado y la deformación axial recuperable del espécimen son medidos y usados para calcular el módulo dinámico y el ángulo de fase (AASHTO T 342-11).

De acuerdo con la norma AASHTO T 342-11 "Método de ensayo para determinación del Módulo dinámico de Mezclas Asfálticas en Caliente (HMA)", se aplica una carga cíclica sinusoidal a un espécimen de concreto asfaltico, de 100 mm de diámetro y 150 mm de altura, a las temperaturas de -10, 4, 21, 37 y 54°C y frecuencias de carga de 0.1, 0.5, 1.0, 5, 10 y 25 Hz para cada una de las temperaturas. Cada espécimen es ensayado para cada una de las 30 combinaciones de temperatura y frecuencia de carga, comenzando de la temperatura más baja a la más alta, y de la frecuencia más alta a la más baja. Durante el ensayo, se mide el esfuerzo y la deformación por medio de una celda de carga y LVDTs, respectivamente. La deformación del espécimen se mantiene dentro del rango lineal, entre 50 y 150 $\mu\epsilon$, por lo que la carga aplicada es ajustada para cada frecuencia y temperatura para alcanzar el nivel de deformación apropiado.

1.5 Principales representaciones gráficas de | E* |

Los resultados de módulo dinámico pueden ser representados por medio de curvas isotérmicas, plano Cole-Cole, diagrama de Black y la curva maestra. Esta última es la más utilizada y conocida.

1.5.1 Curvas isotérmicas

Las curvas isotérmicas son construidas graficando el valor del módulo dinámico ($|E^*|$) o ángulo de fase, (δ) en función de la frecuencia para cada una de las temperaturas de ensayo T(°C); en el caso del módulo, se utiliza una escala bilogarítmica. La pendiente de las curvas isotérmicas permite estimar la susceptibilidad cinética del material asfáltico (variación del módulo con la velocidad de solicitación).

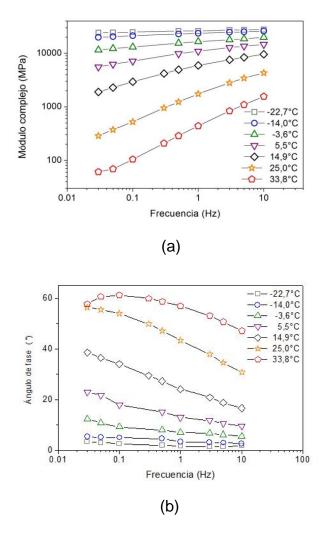


Figura 1.3 Curvas isotérmicas del módulo dinámico (a) y ángulo de fase (b)

De estas dos gráficas se puede determinar ciertos comportamientos clásicos de la mezcla asfáltica.

Módulo dinámico, fig. 1.3 (a):

- Cuando aumenta la frecuencia, aumenta el valor del módulo
- Cuando aumenta la temperatura, disminuye el valor del módulo
- El efecto de la frecuencia es más importante para las temperaturas altas Ángulo de fase, fig.1.3 (b):
 - Cuando aumenta la frecuencia, disminuye el valor del ángulo de fase
 - Cuando aumenta la temperatura, aumenta el valor del ángulo de fase
 - El efecto de la frecuencia es más importante para las temperaturas altas

1.5.2 Plano Cole-Cole (o plano complejo)

Esta representación se construye graficando en el eje de las abscisas la parte elástica ($E_1 = |E^*| \cos \delta$), y en el eje de las ordenadas la parte viscosa ($E_2 = |E^*| \sin \delta$) del módulo dinámico. Esta curva puede ser utilizada para calibrar un modelo de comportamiento reológico. Debido a que el material obedece el principio de equivalencia frecuencia—temperatura, los puntos experimentales permiten definir una curva única y característica del material evaluado.

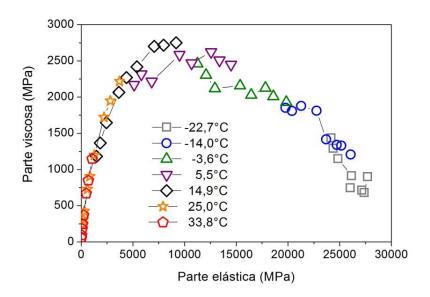


Figura 1.4 Gráfica de plano de Cole-Cole.

1.5.3 Espacio de Black

El espacio de Black se construye graficando el valor del módulo dinámico, en escala logarítmica, en el eje de las abscisas, y el valor del ángulo de fase en escala aritmética en el eje de las ordenadas. Los valores del ángulo de fase son graficados en orden creciente de derecha a izquierda. Al igual que en la gráfica de Cole-Cole cuando el material cumple con el principio de equivalencia-temperatura se define una curva única que es característica del material.

Esta gráfica es muy útil para representar los valores de módulo dinámico y de ángulo de fase obtenidos a temperaturas altas.

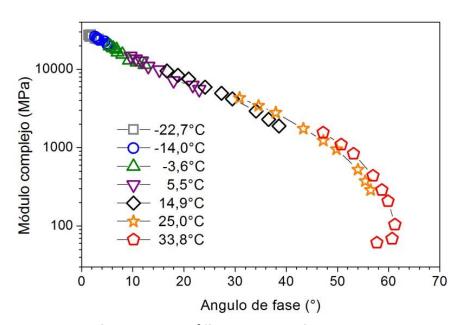


Figura 1.5 Gráfica de espacio de Black.

1.5.4 Curva maestra

La mezcla asfáltica es un material viscoelástico lineal; para evaluar su desempeño, se hace uso del principio de superposición tiempo-temperatura. El módulo dinámico es una función de la frecuencia (tiempo) y la temperatura, de manera que el valor del módulo dinámico puede ser representado utilizando una sola variable reducida que depende de la frecuencia y temperatura del ensayo $[\omega^*f(T)]$.

Este principio permite que un mismo valor de módulo del material puede ser obtenido para diferentes pares frecuencia-temperatura (ω-T):

$$E^*(\omega_1, T_1) = E^*(\omega_2, T_2)$$
 para $\omega_1 f(T_1) = \omega_2 f(T_2)$ (1.4)

Utilizando este principio, es posible construir una curva única para una temperatura de referencia T_R seleccionada arbitrariamente. Para construirla es necesario realizar ensayos de laboratorio a diferentes temperaturas y frecuencias, luego cada isoterma de temperatura es trasladada paralelamente al eje de las abscisas, con respecto a la isoterma de referencia T_R , hasta tener una superposición de los puntos de todas las isotermas, figura 1.6. El valor del factor de desplazamiento (a_T) de cada isoterma con respecto a T_R es $log(a_T)$, donde a_T es una función de la temperatura que es un indicador de la susceptibilidad térmica de la mezcla asfáltica y que solo depende del tipo de material asfáltico utilizado.

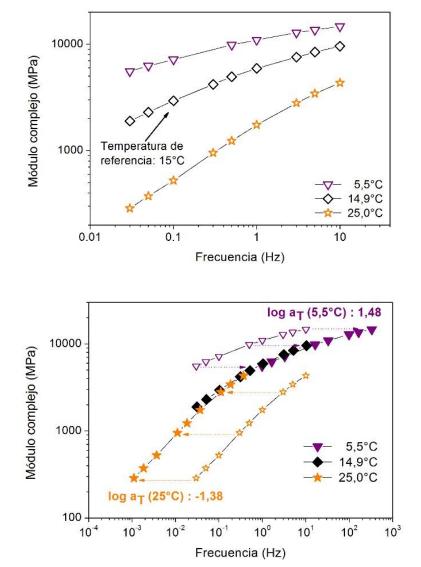


Figura 1.6 Construcción de la curva maestra.

El factor de desplazamiento horizontal (a_T) es calculado usando la relación empírica de Williams-Landel-Ferry (WLF), (Delgado H., 2013):

$$log(a_T) = \frac{-C_1(T - T_R)}{(T - T_R) + C_2}$$
 (1.5)

donde

C₁ y C₂ Constantes positivas que dependen del material

T_R Temperatura de referencia, °C

T Temperatura de ensayo, °C

El factor de traslación, a_T, tiene las siguientes propiedades

T>T_R Log at <0 T<T_R Log at >0 T=T_R Log at = 0

La curva construida se llama "Curva Maestra", figura 1.7, la cual es característica del material y permite determinar valores de módulo en frecuencias que no pueden ser obtenidas experimentalmente.

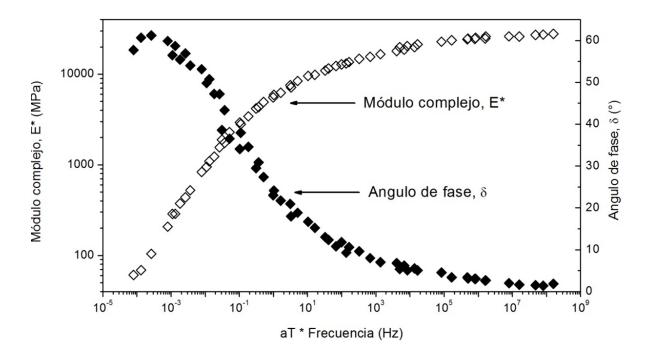


Figura 1.7 Curva maestra de módulo dinámico

2 Experimentación y resultados

En el laboratorio de asfaltos y mezclas asfálticas del IMT se han realizado ensayos de módulo dinámico de acuerdo con la norma AASHTO T 342-11 y se ha detectado dispersión en los resultados de frecuencias y temperaturas altas, por lo que se proponen las siguientes modificaciones al procedimiento de prueba, con la intención de disminuir la dispersión:

- Eliminar la frecuencia de 25Hz. En esta frecuencia es difícil determinar el ángulo de fase de la mezcla asfáltica, debido a que requiere que los LVDT tengan la capacidad de medir un desfase de la señal con una precisión de 0.00011 s para obtener una precisión de 1° en las mediciones. La mayoría de los equipos no pueden realizar de manera adecuada mediciones con esa precisión.
- Reducir el rango de temperaturas de ensayo. Debido al carácter viscoelástico de la mezcla asfáltica, su rigidez varía con la temperatura; por ejemplo, para la temperatura más baja, el valor del módulo es del orden de 30 000 MPa; y para la temperatura más alta, de 100 MPa. El rango de medición es muy amplio para el equipo de medición, puede equivaler a evaluar materiales diferentes, y es probable que en algunos equipos se requiera ajustar los valores de las ganancias (PID) dependiendo de la temperatura a la que se ejecute el ensayo. Lo anterior es poco práctico y además a temperaturas muy altas (54°C) no se logran cumplir fácilmente los requerimientos de coeficiente de uniformidad (Uδ) del ángulo de fase indicados en la norma AASHTO T 342-11.
- Cambiar el orden de las frecuencias de ensayo. Independientemente de que las solicitaciones se realicen dentro del rango viscoelástico (en teoría no hay deformaciones permanentes); durante el ensayo se genera una historia de carga en las probetas evaluadas asociada a un acomodo del material y un aumento de temperatura de la probeta, por la disipación de energía. El hecho de iniciar con la frecuencia más baja hace que estos efectos se presenten de manera gradual, y la mezcla tenga una mejor respuesta (menos dispersión de resultados).
- Reducir los intervalos de temperaturas de ensayo. Mientras exista mayor diferencia de temperatura entre los puntos muestrales, aumenta la variación en la determinación de los valores de sensibilidad térmica de la mezcla asfáltica (valores a₁); y como consecuencia se pueden tener errores en la construcción de la curva maestra.

Por las razones anteriores, se plantea ejecutar los ensayos de modulo dinámico a las temperaturas de -10, 0, 20, 30 y 40 °C y frecuencias de 10, 5, 1, 0.5, 0.1 Hz, empezando de las temperaturas y frecuencias bajas a las altas. Esta propuesta se

basa en el principio de superposición o equivalencia tiempo-temperatura y considerando que los equipos de medición cumplen con los requisitos y se siguen los tiempos de acondicionamiento mínimos definidos en la norma AASHTO T 342-11, el cambio de orden de frecuencias no debe tener influencia en el comportamiento viscoelástico lineal de la mezcla.

Para verificar si los cambios propuestos afectan los valores de módulo dinámico y ángulo de fase, se realizaron ensayos de modulo dinámico en especímenes fabricados con las mismas características y realizando el ensayo de acuerdo con la norma AASHTO T 342-11 y el procedimiento propuesto por el laboratorio del IMT.

Los especímenes fueron fabricados con una granulometría de diseño de 19 mm ($\frac{3}{4}$ ") de tamaño nominal, fig. 2.1, agregado pétreo basáltico y asfalto PG 64-22 (Ekbé) de la refinería de Salamanca, Gto. El contenido óptimo de asfalto fue de 5.4%, con respecto a la masa total de la mezcla asfáltica; los especímenes fueron compactados a 100 giros de diseño y la gravedad especifica teórica máxima de la mezcla (G_{mm}) determinada a través de ensayos de laboratorio fue de 2.542.

De los especímenes compactados fueron extraídos núcleos de 100 cm de diámetro, aproximadamente, y cortados a una altura de 150 ± 2.5 mm. El contenido de vacíos de aire especificados para los especímenes de ensayo fue de 4 ± 1 %. La tabla 2.1 muestra las características de los especímenes ensayados. La deformación fue medida con 3 LVDT colocados a 120° , fig. 2.2.

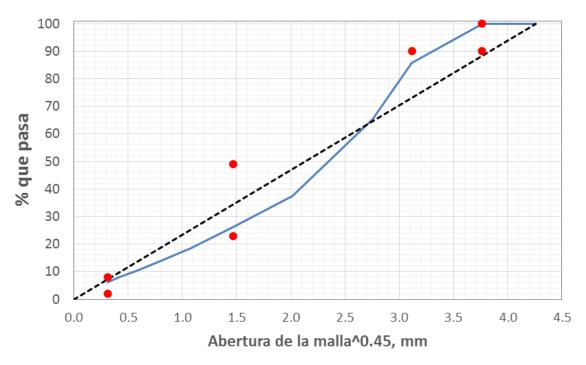


Figura 2.1 Granulometría de los especímenes de ensayo

ID	Va %	Gmb	H prom mm	D prom mm	Método de prueba
34	3.7	2.448	100.89	149.94	AASHTO
117	3.7	2.448	101.51	151.16	
					T 321-11
16	3.2	2.460	101.46	150.99	IMT
35	4.0	2.440	100.8	149.60	1

Tabla 2.1 Características de los especímenes ensayados.

Figura 2.2 Espécimen de ensayo.

2.1 Verificación del funcionamiento del equipo de ensayo

Antes de realizar ensayos de módulo dinámico en mezclas asfálticas, es necesario verificar el buen funcionamiento del equipo en lo que se refiere a la aplicación de la magnitud, tipo (onda haversine) y frecuencia de carga, medición de las deformaciones axiales y el muestreo de datos. Para comprobar el funcionamiento del equipo se utiliza una probeta patrón fabricada en acero, con las siguientes características: diámetro 101.6 mm (4"), altura 200 mm (7.87"), longitud de los medidores de deformación (LVDT´s) 101.6 mm (4") colocados a 120°C uno con respecto al otro y con un valor de módulo dinámico de 2300 MPa, fig.2.2.

Figura 2.2 Probeta patrón para verificar el funcionamiento del equipo de ensayo.

Los ensayos fueron realizados a las temperaturas de -10, 0,10, 20, 30 y 40°C, frecuencias de 25,10, 5,1,0.1 y 0.5 Hz y comenzando de la frecuencia bajas a altas (procedimiento IMT). Los resultados del ensayo aparecen en la tabla 1A del anexo 2.

2.2 Ensayo de módulo dinámico AASHTO T 342-11.

Los ensayos se realizaron a las temperaturas de -10, 4, 21, 37 y 54°C y frecuencias de 25, 10, 5, 1, 0.5, 0.1 Hz, comenzando de temperaturas bajas a altas y de frecuencias altas a bajas, conforme a la norma AASTHO T 342-11. Es importante mencionar que solo uno de los especímenes fue ensayado a la frecuencia de 25 Hz debido a problemas de deslizamiento del espécimen en la temperatura de -10°C y a la alta dispersión en los resultados del ensayo a temperaturas altas (>40°C). Posteriormente los mismos especímenes se ensayaron, pero comenzando de temperaturas y frecuencias bajas a altas y eliminando la frecuencia de 25 Hz.

Las tablas 2A, 3A y 9A del anexo 2 presentan los resultados de los ensayos.

2.3 Procedimiento IMT

En este caso, los ensayos fueron realizados a las temperaturas de -10, 0, 10, 20, 30 y 40°C y frecuencias de 10, 5, 1, 0.5, 0.1 Hz, comenzando de temperaturas y frecuencias bajas a altas. Posteriormente, los mismos especímenes se ensayaron pero comenzando de temperaturas bajas a altas y de frecuencias altas a bajas. Los resultados de los ensayos pueden ser consultados en las tablas 4A a 8A del anexo 2.

Propuesta de método de prueba de módulo dinámico en mezclas asfálticas para México

3 Análisis de resultados

3.1 Verificación de funcionamiento del equipo

La figura 3.1 muestra las curvas isotérmicas obtenidas a las diferentes temperaturas; como era de esperar, el valor del módulo dinámico no varía con la temperatura y frecuencia de ensayo, debido al material del que está hecha la probeta.

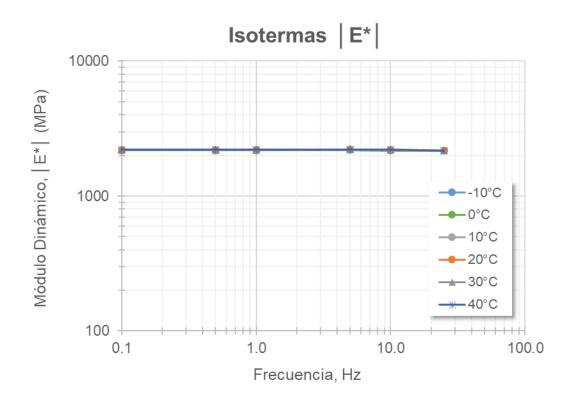


Figura 3.1 Curvas isotérmicas de la probeta patrón.

La curva maestra del módulo dinámico y ángulo de fase aparece en la figura 3.2. El valor del módulo dinámico y ángulo de fase no varía con la frecuencia y temperatura, lo cual indica que el equipo mide correctamente.

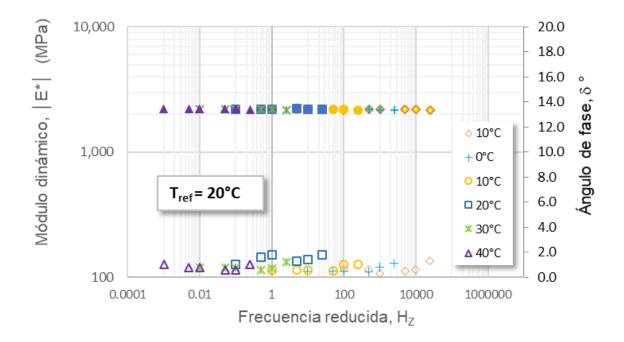


Figura 3.2 Curva maestra de módulo dinámico y ángulo de fase, probeta patrón

3.2 Eliminar la frecuencia de 25 Hz y reducir el rango de temperaturas de ensayo

Para verificar esta propuesta se ejecutó un ensayo de acuerdo con la norma AASHTO T 342-11. La figura 3.3 muestra la curva maestra del módulo dinámico y el ángulo de fase del espécimen ensayado; ambas curvas tienen una forma suavizada, lo que indica un comportamiento correcto para los valores de módulo dinámico y ángulo de fase; pero observando a detalle, se pueden ver ligeras desviaciones en los valores del ángulo de fase a 25 Hz a las diferentes temperaturas de ensayo (puntos rojos), las cuales son más evidentes cuando los resultados son analizados en el plano Cole-Cole, fig. 3.4.

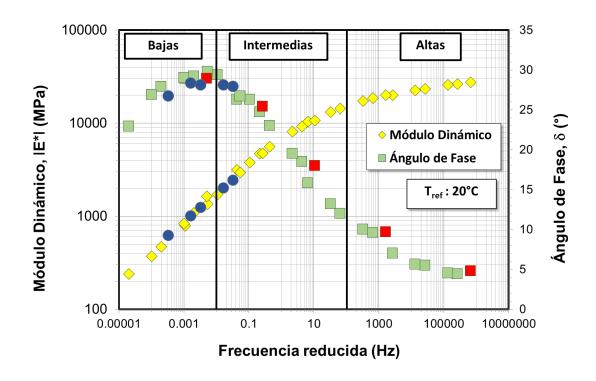


Figura 3.3 Curva maestra de módulo dinámico (\mid E* \mid) y ángulo de fase (δ), espécimen 117.

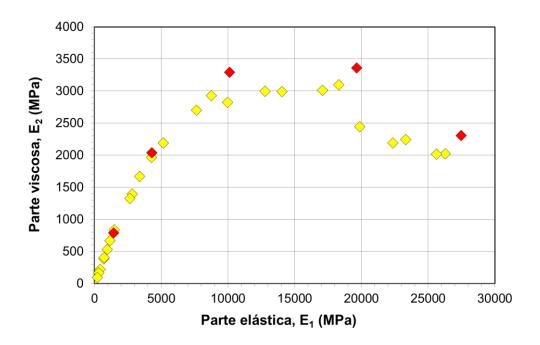


Figura 3.4 Curva maestra de módulo dinámico ($\mid E^* \mid$) y ángulo de fase (δ), espécimen 117.

Para que el resultado sea válido, la norma AASTHO T 342-11 en el punto "calidad de los datos" indica que se debe verificar la confiabilidad de los datos obtenidos del ensayo a través de cuatro indicadores de calidad: el error estándar del esfuerzo aplicado (se_σ), el error estándar promedio de la medición de deformaciones (se_ε), el coeficiente de uniformidad ($U\varepsilon$) y el coeficiente de uniformidad para las mediciones del ángulo de fase (U_δ). La tabla 3.1 señala los límites recomendados para los indicadores de calidad de los datos.

Tabla 3.1 Indicadores de calidad de los datos

Indicador	Símbolo	Límite
Error estándar del esfuerzo	SE_σ	≤ 10
Error estándar promedio de la	SE _ε	≤ 10
coeficiente de uniformidad	Uε	≤ 35
coeficiente de uniformidad	U _δ	≤ 3 grados

Fuente: AASTO T 342-11

La mayoría de los resultados obtenidos cumple con los indicadores de calidad, a excepción de los correspondientes a la temperatura de 54°C (tablas A2-A4 del anexo 2). En la tabla 3.2 se comparan los resultados a las temperaturas de 54 y 40°C de dos especímenes (117 y 16), a la temperatura de 54°C las mediciones del ángulo de fase no cumplen con el límite para el coeficiente de uniformidad (U $_{\delta}$) esto puede ser debido a varios factores como son la baja rigidez de la mezcla asfáltica, las ganancias del equipo (PID) no son las adecuadas para la temperatura de ensayo, la acumulación de deformación permanente, etc. Por otra parte, el realizar el ensayo a dicha temperatura solo agrega dos datos más en la curva maestra; mientras que, tras ejecutar el ensayo a 40°C, se cubre un rango relativamente menor (círculos azules, figura3.3), pero disminuye la dispersión y se cumple con los indicadores de calidad de la medición.

Tabla 3.2 Evaluación de la calidad de los datos a 54°C y 40°C

ID espécimen	Método de prueba	Temperatura	Frecuencia	S Eσ	SEε	Uε	Uδ	Е р
		°C	Hz	(≤10%)	(≤10%)	(≤35%)	(≤3°)	με
	A A OLUTO T		25.0	5.0	6.1	36.3	3.2	248
	AASHTO T		10.0	6.2	7.7	30.9	3.7	304
	342 Frecuencias Altas a	54	5.0	4.1	6.3	28.3	4.2	325
117			1.0	0.7	4.4	30	3.8	332
	bajas		0.5	0.8	4.4	31.2	3.7	336
	bajas		0.1	1	4.8	30.3	3.3	382
	Danasasas		10.0	8.0	5.8	14.2	0.9	76
	Propuesta IMT Frecuencia Bajas-altas	ia 40	5.0	0.7	5.4	11.5	0.3	133
16			1.0	0.5	4.5	10.8	0.7	178
			0.5	3.5	4.7	9.7	1.4	298
	Dajas-alias		0.1	6	5.9	11.9	2.1	719

Por lo descrito anteriormente, se considera adecuado eliminar la frecuencia de 25 Hz y reducir el rango de temperaturas de ensayo de -10°C a 40°C.

3.3 Cambiar el orden de las frecuencias de ensayo

Con la finalidad de confirmar que no hay influencia en la caracterización de las propiedades viscoelásticas de la mezcla asfáltica debido al cambio en el orden de las frecuencias, se realizaron ensayos bajo las condiciones señaladas en la siguiente tabla:

Tabla 3.3 Temperaturas y orden de frecuencias usadas para realizar los ensayos

ID	Condición	Temperaturas	Frecuencias
	de ensayo	°C	Hz
34	Frecuencia alta-baja	-10,4,21,37 y 54	10,5,1.0,0.5,0.1
35	Frecuencia baja-alta	-10,0,10,20,30 y 40	0.1,0.5,1.0,5,10
117	Frecuencia alta-baja	-10,4,21,37 y 54	0.1,0.5,1.0,5,10

Los resultados son mostrados en las tablas 2A a 9A del anexo 2; en las figuras 3.5 y 3.6 se puede observar que no hay una diferencia importante entre las curvas maestras de módulo dinámico y ángulo de fase, plano Cole-Cole y diagrama de Black, entre los ensayos realizados.

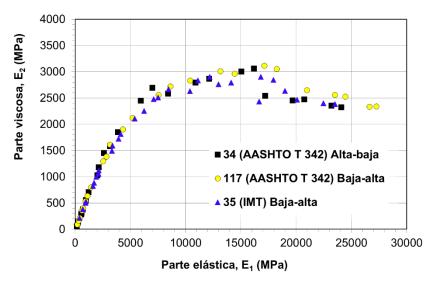


Figura 3.5 Plano Cole-Cole de los ensayos realizados con diferentes órdenes de frecuencias

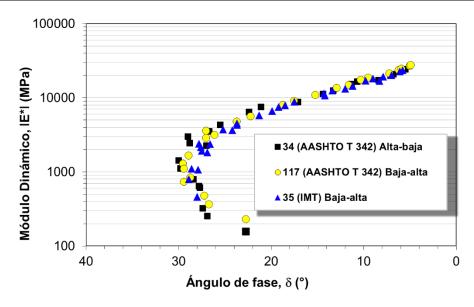


Figura 3.6 Grafica de Black de los ensayos realizados con diferentes órdenes de frecuencias.

Asimismo, se comprobó, a través del factor de traslación (a_T) , si el orden de las frecuencias afecta la sensibilidad térmica de la mezcla asfáltica. La figura 3.7 muestra el valor de a_T para cada una de las temperaturas de ensayo de cada uno de los especímenes, se observa que no hay diferencias significativas en los valores obtenidos y se concluye que el cambio de orden de las frecuencias de ensayo no influye en la sensibilidad térmica de la mezcla asfáltica.

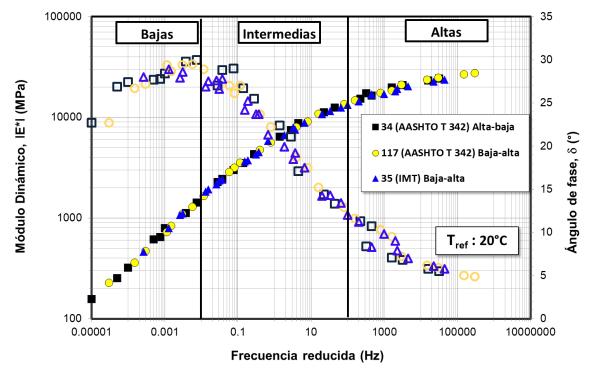


Figura 3.7 Curva maestra de módulo dinámico y ángulo de fase de los ensayos realizados con diferentes órdenes de frecuencias

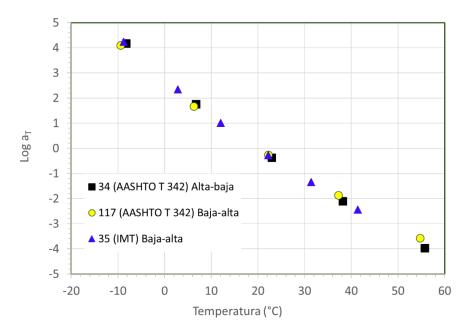


Figura 3.8 Valores de at.

Otra manera de verificar la influencia del orden de las frecuencias de ensayo es por medio de la calibración de un modelo reológico. El primer modelo de este tipo, propuesto para describir el comportamiento de asfaltos y mezclas asfálticas, fue el de Huet. Recientemente, Olard demostró que el modelo de Huet-Sayegh no es conveniente para ciertos materiales asfálticos a muy bajas frecuencias, y propuso una mejora a este modelo mediante la introducción de un amortiguador lineal. Este nuevo modelo es denominado "2S2P1D" (2 Springs, 2 Parabolic, 1 Dashpot).

El modelo 2S2P1D, figura 3.9, consiste en una generalización del modelo de Huet-Sayegh. Se ha demostrado que este es un modelo preciso para la determinación del comportamiento viscoelástico lineal (rango de pequeñas deformaciones) de materiales asfálticos. Este modelo requiere de solo siete constantes (E00, E0, δ , h, η , τ) para una temperatura seleccionada, ecuación 3.1 (Olard, 2003).

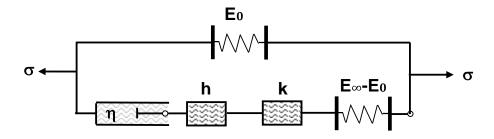


Figura 3.9 Modelo reológico 2S2P1D.

$$E_{2S2P1D}^*(j\omega\tau) = E_{00} + \frac{E_0 - E_{00}}{1 + \delta(j\omega\tau)^{-k} + (j\omega\tau)^{-h} + (j\omega\beta\tau)^{-1}}$$
(3.1)

donde

 $E_{2S2P1D}^{*}(j\omega\tau)$, módulo dinámico

j es el número complejo definido por $j^2 = -1$

ω es la pulsación, ω = 2πf, (f es la frecuencia)

k, h exponentes tal que 0 < k < h < 1

 δ = una constante

 E_{00} = módulo estático, cuando $\omega \rightarrow 0$

 E_0 = módulo vítreo, cuando $\omega \rightarrow \infty$

η = viscosidad newtoniana, η = (E₀-E₀₀) βτ

 τ = tiempo característico; su valor depende solamente de la temperatura, τ evoluciona aproximadamente a la ley WLF.

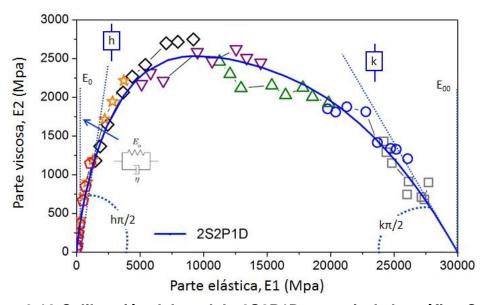


Figura 3.10 Calibración del modelo 2S2P1D, a partir de la gráfica Cole-Cole (Olard, 2003).

Los resultados de la calibración del modelo reológico 2S2P1D aparecen en la tabla 3.4. Los valores de los parámetros de calibración son similares y puede ser utilizado un valor promedio para modelar de manera general el comportamiento viscoelástico lineal de la mezcla asfáltica, tal como muestra la figura 3.11.

Tabla 3.4 Resultados de calibración del modelo 2S2P1D

ID 34	ID 117	ID 35
(AASHTO T 342-11)	(AASHTO T 342-11)	(IMT)
A-B	B-A	B-A
E ₀₀ = 180 MPa	E ₀₀ = 180 MPa	E ₀₀ = 210 MPa
E ₀ = 29500 MPa	E ₀ = 30000 MPa	E ₀ = 30000 MPa
k = 0.2395	k = 0.241	k = 0.23
h = 0.4995	h = 0.465	h = 0.47
δ = 3.0	δ = 2.9	δ = 2.7
$\tau = 0.1$	$\tau = 0.1$	$\tau = 0.1$
β = 300	β = 350	β = 350

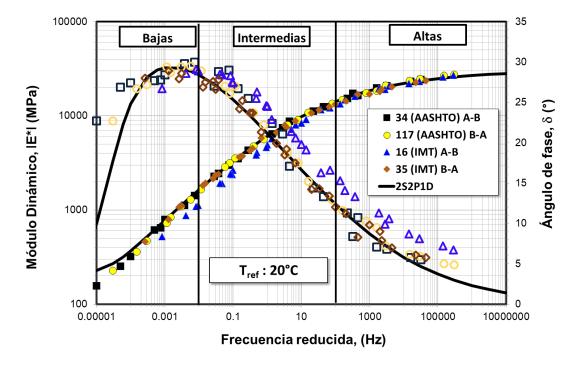


Figura 3.11 Resultado de ensayo vs Calibración del modelo 2S2P1D

Con estas evaluaciones se demuestra que el cambio en el orden de las frecuencias en el ensayo de módulo dinámico propuesta por el IMT no afecta los resultados obtenidos en la caracterización de las propiedades viscoelásticas lineales de la mezcla asfáltica.

3.4 Plano Cole-Cole y diagrama de Black

Para cumplir con el último de los objetivos de este trabajo, se realizó un análisis con los resultados obtenidos por tres laboratorios diferentes. Estos ensayaron especímenes fabricados con una granulometría de diseño de 19 mm (¾") de tamaño nominal, agregado pétreo basáltico y asfalto PG 64-22 (Ekbé). El contenido óptimo de asfalto fue de 5.4%, con respecto a la masa total de la mezcla asfáltica; los especímenes fueron compactados a 100 giros de diseño y la gravedad especifica teórica máxima de la mezcla (G_{mm}) determinada a través de ensayos de laboratorio fue de 2.542.

De los especímenes compactados fueron extraídos núcleos de 100 cm de diámetro aproximadamente y cortados a una altura de 150 ± 2.5 mm. El contenido de vacíos de aire especificados para los especímenes de ensayo fue de 4 ± 1 %. La deformación fue medida con 2 LVDT.

Para realizar el ensayo, se siguió el procedimiento propuesto por el IMT: temperaturas de -10, 0,10,20,30 y 40°C, frecuencias de 0.1, 0.5,1,5, y 10 Hz y comenzando de las frecuencias bajas a altas. La figura 3.13 muestra la curva maestra de modulo dinámico de los ensayos de cada uno de los laboratorios; a simple vista, se observa que las curvas son diferentes, es decir, que hay diferencias en los valores de módulo dinámico. Los laboratorios 1 y 2 obtuvieron valores similares en todo el rango de frecuencias evaluado, mientras que el laboratorio 3 obtuvo valores inferiores para frecuencias intermedias y bajas.

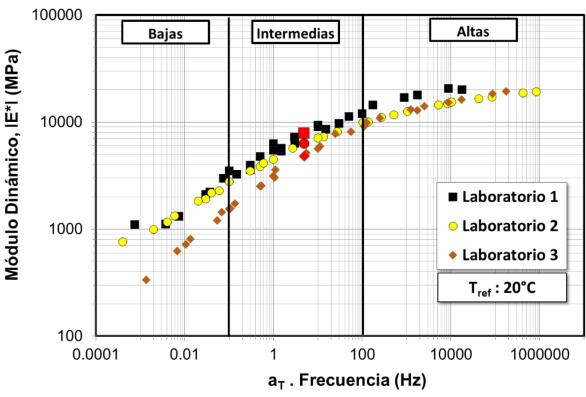


Figura 3.12 Curva maestra de módulo dinámico

La figura 3.13 presenta la curva maestra; si solamente se considera esta, es difícil determinar cuál de los tres laboratorios obtuvo los valores correctos; por simple inspección de la figura 3.13, se puede pensar que los laboratorios 1 y 2 obtuvieron los valores correctos. Sin embargo, al construir la curva maestra del ángulo de fase (fig. 3.14), otro de los parámetros obtenidos del ensayo, se puede observar que los valores reportados por el laboratorio 1 son incongruentes porque el valor de dicho parámetro no varía con la frecuencia, lo cual significaría que la mezcla asfáltica no es susceptible a la velocidad de aplicación de la carga ni a la temperatura. Lo anterior indica que el laboratorio 1 no realizó correctamente el ensayo de módulo dinámico.

Las figuras 3.13 y 3.14 indican con puntos rojos los valores del módulo dinámico y ángulo de fase obtenidos por los tres laboratorios, para las especificaciones de diseño (20°C y 10 Hz) señaladas en el protocolo AMAAC PA-MA-01/2013 "Diseño de mezclas asfálticas de granulometría densa de alto desempeño". En esta condición, al realizar el ensayo a solo una temperatura, tampoco se puede determinar si el laboratorio ejecutó correctamente el ensayo.

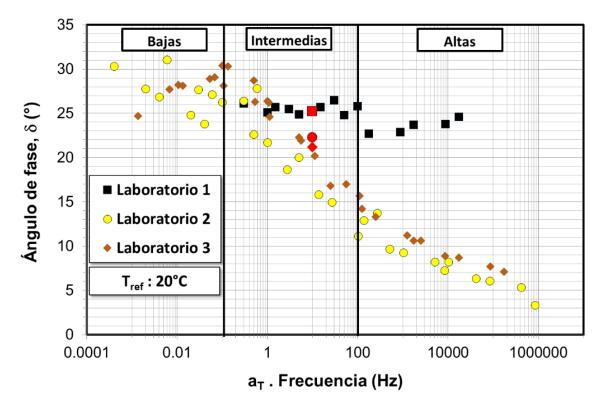


Figura 3.13 Curva maestra del ángulo de fase comparando tres laboratorios

Es importante mencionar que los laboratorios no reportaron los valores de los indicadores de calidad señalados en la norma AASHTO T 342-11, por lo que no se tiene la certeza si los resultados son válidos. Por esta razón se complementa el análisis con el plano Cole-Cole y diagrama de Black.

En la figura 3.14 se puede ver que el laboratorio 2 presentó dispersión en los valores del ángulo de fase y estos fueron ligeramente inferiores a los obtenidos por el laboratorio 3. Para ver de manera más clara los resultados se elaboró el plano Cole-Cole y el diagrama de Black, figuras 3.15 y 3.16 respectivamente. Estos cuadros evidencian la calidad de las mediciones entre los laboratorios 2 y 3. Los resultados del laboratorio 3 forman una curva única, mientras que en los resultados del laboratorio 2 existen algunos puntos dispersos (círculos rojos).

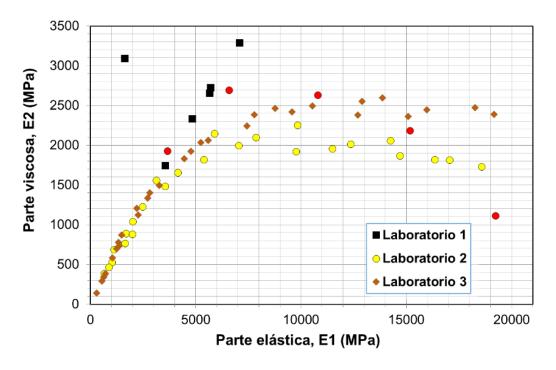


Figura 3.14 Plano Cole-Cole

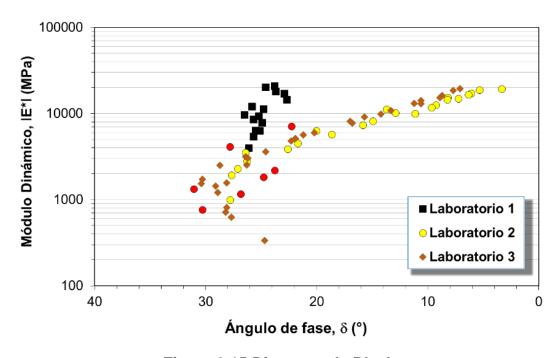


Figura 3.15 Diagrama de Black

En la figura 3.15, plano Cole-Cole, se puede ver que los puntos rojos, correspondientes a la frecuencia de 10 hz, están muy dispersos; probablemente el equipo no mide correctamente a dicha frecuencia, por lo que se debería hacer una verificación del equipo o de los medidores de deformación.

Debido a que el protocolo AMAAC PA-MA-01/2013 especifica cumplir con un valor mínimo de módulo dinámico (5000 MPa) a la temperatura de 20°C y 10 Hz, los laboratorios pretenden evaluar el desempeño de la mezcla únicamente en esta condición. Sin embargo, como se mostró anteriormente, el desempeño de la mezcla no puede ser evaluado si solo se analiza uno de los 30 puntos experimentales de la curva maestra.

Asimismo, es preciso comentar que la mezcla asfáltica evaluada tiene un módulo dinámico mayor a 5000 MPa; por lo que si se emplea agregado pétreo de buena calidad y una granulometría adecuada no siempre resulta necesario utilizar asfalto modificado para lograr un buen desempeño.

Por otro lado, en las figuras 3.17 a 3.20 aparecen resultados de algunos ensayos que se han ejecutado en el laboratorio de asfaltos y mezclas asfálticas del IMT. En la tabla 13 A y 14A del anexo se indican los valores obtenidos de los ensayos. Los especímenes fueron fabricados con asfalto PG 64-22, contenido de vacíos de aire de 3.4% y un 5,4% de asfalto; y ensayados bajo el procedimiento propuesto por el mismo laboratorio. Se puede observar que no hay diferencias importantes en las mediciones cuando el ensayo se realiza correctamente.

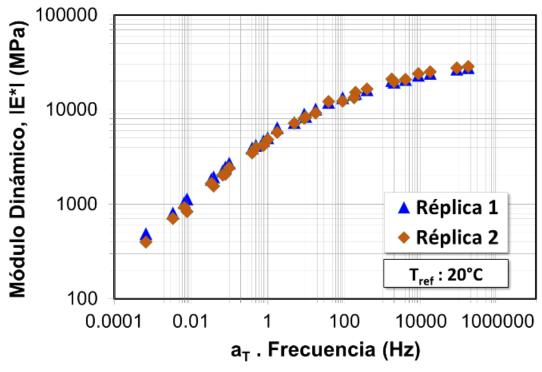


Figura 3.16 Curva maestra de modulo dinámico del laboratorio IMT

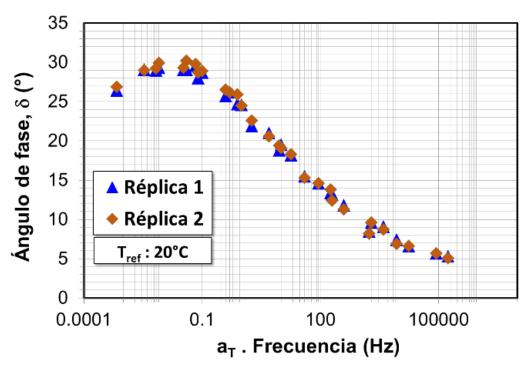


Figura 3.18 Curva maestra de ángulo de fase del laboratorio IMT

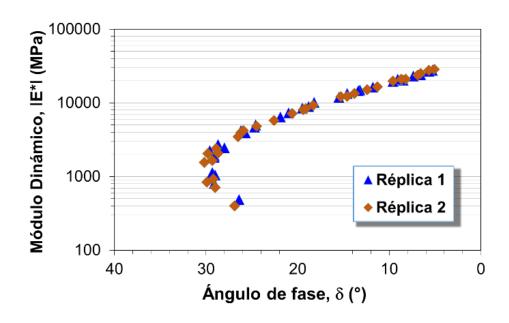


Figura 3.17 Diagrama de Black de los ensayos del laboratorio IMT

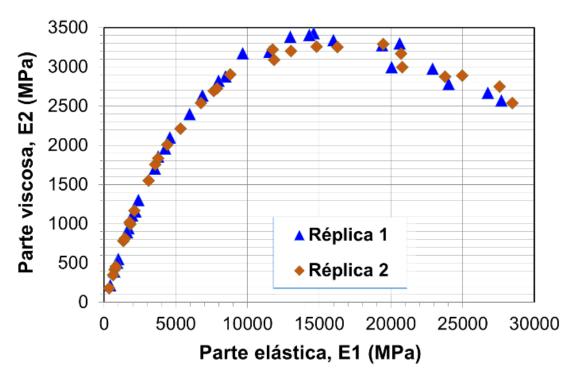


Figura 3.18 Plano Cole-Cole de los ensayos del laboratorio IMT.

4 Conclusiones

En el presente estudio se evaluó el método de prueba de la norma AASHTO T 342-11, con la finalidad de proponer modificaciones que permitan mejorar la dispersión de los resultados obtenidos del ensayo. Con base en los ensayos realizados y el análisis de los datos, a continuación, se mencionan los hallazgos encontrados:

- El rango y los intervalos de temperaturas de ensayo (-10,0,10,20,30 y 40°C), así como el orden de las frecuencias (0.1,0.5,1,5 y 10 Hz) propuesto por el laboratorio de asfaltos y mezclas asfálticas del IMT no afecta los resultados del ensayo de módulo dinámico.
- Es necesario evaluar el desempeño de la mezcla asfáltica en todo el rango de temperaturas y frecuencias para determinar la curva maestra, y no solo a la temperatura indicada en la especificación de diseño (20°C y 10 Hz).
- La evaluación del desempeño de la mezcla asfáltica debe considerar los dos parámetros obtenidos del ensayo: modulo dinámico y ángulo de fase.
- Se recomienda complementar el análisis de resultados del ensayo de módulo dinámico con las representaciones graficas de Plano Cole-Cole y diagrama de Black. El análisis a través de estas representaciones permite detectar problemas de medición del equipo.

Bibliografía

- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO). Standart Method of test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA) T 342-11, 444 North Capitol Street N.W, Suite 249. Washington D.C, 2001.
- ASOCIACIÓN MEXICANA DEL ASFALTO (AMAAC). Protocolo AMAAC PA-MA-01/2013 "Diseño de mezclas asfálticas de granulometría densa de alto desempeño". México, 2013.
- DELGADO, H. Lo complejo del módulo Complejo: principio de equivalencia tiempo-temperatura (tercera parte). Revista técnica Asfáltica No. 34, abril-junio, 2013.
- DI BENEDETTO H., Nouvelle approche du comportement des enrobés bitumineux: résultats expérimentaux et formulation rhéologique. In: RILEM. Ensayos mecánicos en mezclas asfálticas, 1990, Budapest, pp 387-401.
- HUANG, Y.H. Pavement Analysis and Design. 1st Ed. Prentice Hall, Upper River Saddle. N.J. 1993.
- LEIVA, Fabricio. Módulo dinámico de mezclas asfálticas. Laboratorio Nacional de Materiales y Modelos Estructurales (LANAME), 2004.
- OLARD F. Comportement thermomécanique des enrobés bitumineux à basses températures. Relations entre les propriétés du liant et de l'enrobé. Tesis: Instituto Nacional de Ciencias Aplicadas de Lyon, 2003, 221 p.
- ROWE, Geoffrey; Hakimzadeh Salman; Blankenship Philip. Evaluation of aspects of E* test using HMA specimens with varying void contens, 2008.

Propuesta de método de prueba de módulo dinámico en mezclas asfálticas para México

Anexo 1. Propuesta de método de prueba para determinar el módulo dinámico en mezclas asfálticas

A Contenido

Este documento describe el procedimiento de prueba para determinar el módulo dinámico y ángulo de fase de mezclas asfálticas fabricadas en laboratorio.

B. Objetivo de la prueba.

B.1 Esta prueba permite determinar el valor del módulo dinámico y ángulo de fase de la mezcla asfáltica en un rango de temperaturas y frecuencias de carga. La prueba consiste en aplicar un esfuerzo de compresión axial senoidal (haversine) a un espécimen de mezcla asfáltica, a una temperatura y frecuencia de carga determinada. El esfuerzo aplicado y la deformación axial recuperable del espécimen se miden y se usan para calcular el módulo dinámico y el ángulo de fase. Los valores de módulo dinámico medidos en un rango de temperaturas y frecuencias de carga pueden ser ajustados en una curva maestra para caracterizar el concreto asfaltico para el diseño de espesores de pavimentos y análisis de comportamiento.

C. Referencias.

- AASHTO T 342-11 Método prueba estándar para determinar el módulo dinámico de mezclas asfálticas en caliente (HMA).
- ASTM D 2726-14 Gravedad especifica bruta y densidad de mezclas asfálticas compactas no absorbentes.
- ASTM D 2041-11 Gravedad especifica teórica máxima y densidad de Mezclas asfálticas en caliente para pavimentos.
- ASTM D 6925-15 Preparación y determinación de la densidad relativa de especímenes de mezcla asfáltica en caliente por medio del compactador Giratorio Superpave.

D. Equipo

D.1 Sistema de ensayo de módulo dinámico. Un sistema de ensayo de módulo dinámico consiste de una máquina de ensayo, cámara ambiental y sistema de medición.

D.2 Máquina de ensayo. Una máquina de ensayo servohidráulica capaz de producir una carga de compresión sinusoidal controlada. La máquina de prueba debe tener una capacidad de aplicar carga en un rango de frecuencias de 0.1 a 10 Hz y niveles de esfuerzo mayores a 2800 KPa. Para cargas sinusoidales, el error estándar de la carga aplicada debe ser menor que el 5 por ciento. El error estándar de la carga aplicada es una medida de la diferencia entre los datos de carga medidos y el mejor ajuste sinusoidal. El error estándar de la carga es definido en la ecuación 1.

$$se(P) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x}_i)^2}{n-4}} \left(\frac{100\%}{\hat{x}_0}\right)$$
 (1)

donde

se(P)= error estándar de la carga aplicada

xi= carga medida en el punto i

 \hat{x}_i = carga estimada para el punto i del ajuste sinusoidal

 \hat{x}_0 = amplitud del ajuste senoidal

n = número total de datos recolectados durante el ensayo

- D.3 Cámara ambiental. Una cámara para controlar la temperatura del espécimen de ensayo a la temperatura deseada. La cámara ambiental debe ser capaz de controlar la temperatura del espécimen en un rango de temperaturas de -10 a 60 °C con una exactitud de ± 0.5°C. La cámara debe ser lo suficientemente grande para acomodar el espécimen de prueba y el espécimen de referencia con el termocople colocado en el centro para verificar la temperatura.
- D.4 Sistema de medición. El sistema de medición debe estar controlado completamente por computadora, capaz de medir y registrar durante el ensayo la carga aplicada y la deformación axial. El sistema debe ser capaz de medir la carga senoidal aplicada y las deformaciones resultantes con una aproximación de 0.5 %. La precisión y resolución de las mediciones son resumidas en la siguiente tabla:

Tabla 1. Exactitud y resolución del sistema de medición

Medición	Rango	Exactitud	Resolución
Carga	0.12 a 25 kN	Error ≤ 0.0 por ciento	≤ 0.0012kN
Deformación	≥ 1 mm	Error ≤ 0.0025 mm	≤ 0.0002 mm
Log de fase entre la carga y la deformación	No especificado	≤ 1 grado	No especificado

- D.5 Carga, la carga debe ser medida con una celda de carga electrónica en contacto con uno de los extremos del espécimen. La celda de carga debe ser calibrada por un laboratorio con trazabilidad al Centro Nacional de Metrología (CENAM). El sistema de medición de carga debe tener un rango mínimo de 0 a 25 kN con una resolución de 1.2 N.
- Deformaciones axiales, las deformaciones axiales deben ser medidas con un LVDT montado entre los pines pegados al espécimen, por ejemplo, como se muestra en la figura 1. Las deformaciones deben ser medidas en dos puntos a 180° o tres puntos a 120°. Los LVDTs deben tener un rango de medición de ± 0.5 mm. El sistema de medición de la deformación debe poder regresar a cero y debe tener los rangos definidos en la siguiente tabla:

Tabla 2. Requerimientos del sistema de medición de deformación

Rango, mm	Resolución, mm
± 0.5	0.0100
± 0.25	0.0050
± 0.125	0.0025
± 0.0625	0.0010

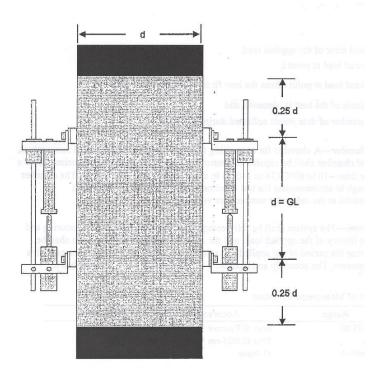


Figura 1. Esquema general de los puntos de medición (Sin escala)

- D.7 Placas de carga. Se requieren placas de carga de 104.5 mm ±0.5 mm para colocar arriba y abajo del espécimen para transferir la carga de la máquina de prueba al espécimen. Generalmente, estas placas deben ser hechas de acero endurecido o de chapa de acero, o aluminio anodizado de alta resistencia. Si son elaboradas de materiales más suaves, se requerirá reemplazarlas más frecuentemente. No se deben utilizar materiales que tengan módulos elásticos lineales y dureza inferior que el aluminio 6061-T6.
- D.8 Compactador giratorio superpave. Un compactador giratorio y el equipo asociado para preparar especímenes de laboratorio de acuerdo con la ASTM D6925. El compactador debe ser capaz de compactar especímenes de 170 mm de altura.
- D.9 Sierra. Una máquina para cortar los extremos de los especímenes de prueba a la longitud requerida. La sierra debe tener un lado de corte con diamante y debe ser capaz de cortar los especímenes a las dimensiones requeridas sin calentarse excesivamente o sin provocar corto.
- D.10 Extractor de núcleos. Una maquina extractora con sistema de enfriamiento y punta de diamante para cortar especímenes de prueba de 101.6 mm de diámetro nominal.

E. Calibración del equipo de prueba.

- E.1 La señal de acondicionamiento y el aparato de adquisición de datos del sistema de ensayo debe ser verificado para asegurar que no haya exceso en la fase de cambio entre los canales de carga y desplazamiento.
- E.2 El sistema de ensayo debe ser calibrado antes de su uso inicial y al menos una vez al año, o de acuerdo con los requisitos de manufactura o cada 200 ensayos.
- E.3 Verificar la capacidad de la cámara ambiental para mantener la temperatura requerida dentro de la exactitud especificada.
- E.4 Verificar la calibración de todos los componentes de medición (tales como celda de carga y LVDTS para medir la deformación del espécimen) del sistema de ensayo.
- E.5 Si cualquiera de las verificaciones proporciona datos que no cumplen con la exactitud especificada, corregir el problema antes de proceder con la prueba.

F. Especímenes de prueba.

- F.1 Tamaño. Los ensayos de módulo dinámico deben realizarse en especímenes de prueba de 150 mm, extraídos de mezclas compactadas en el compactador giratorio. El diámetro promedio de los especímenes debe estar entre 100 y 104 mm con una desviación estándar de 1.0 mm. La altura promedio del espécimen de prueba debe estar entre 147.5 y 152.5 mm.
- F.2 Envejecimiento. Las mezclas preparadas en el laboratorio deben envejecerse a corto plazo, en el horno, durante 4 horas. Las mezclas de campo no requieren ser envejecidas antes del ensayo.
- F.3 Especímenes giratorios. Preparar especímenes de 170 mm de altura de acuerdo con AASHTO T 312 o ASTM D6925 al contenido de vacíos de aire requeridos.

Nota 2. El ensayo debe ser llevado a cabo en especímenes de prueba (101.6 mm de diámetro) que cumplan con las tolerancias de vacíos de aire especificados. Los especímenes giratorios requerido para obtener un espécimen de prueba con el contenido de vacíos especificado deben ser determinados por ensayo y error, conseguido usando menos o más mezcla y compactándolo a la mista altura en el compactador giratorio. Generalmente, el contenido de vacíos de aire del espécimen de prueba es 1.5 a 2.5 por ciento inferior, que el contenido de vacíos de aire del espécimen giratorio cuando el espécimen de prueba es retirado del centro como es especificado en este método.

- F.4 Extracción. Extraer especímenes de prueba de 101.6 mm de diámetro del centro del espécimen giratorio. El extractor y el espécimen giratorio deben estar adecuadamente apoyados para asegurar que el espécimen de prueba resultante sea cilíndrico con los lados lisos; paralelos y libres de ranuras, bordes y escalonamientos.
- F.5 Diámetro. Medir el diámetro del espécimen de prueba en la mitad y en tres puntos a lo largo del eje a 90° uno con respecto al otro. Registrar cada una de las seis mediciones con una aproximación de 0.1 mm. Calcular el promedio y la desviación estándar de las seis mediciones. Si la desviación estándar es mayor que 2.5 mm, desechar el espécimen. Para los especímenes que sean aceptables, utilizar el diámetro promedio con una aproximación a 1 mm en todos los cálculos de las propiedades del material.
- F.6 Preparación de los extremos. Los extremos de todos los especímenes de prueba deben ser lisos y perpendiculares al eje del espécimen. Preparar los extremos de los especímenes cortando con una sierra de una sola o doble hoja. Los extremos de los especímenes preparados deben cumplir las tolerancias descritas abajo. Rechazar los especímenes de prueba que no cumplan dichas tolerancias.
- F.6.1 La altura de la rugosidad de la superficie de corte de los extremos del espécimen debe estar dentro de una tolerancia de ± 0.05 mm en cualquier diámetro. Este requisito debe ser verificado al menos en tres posiciones ubicadas a 120° aproximadamente, usando una regla y vernier de 8.1 a 12.5 mm de ancho aproximadamente o un comparador óptico.

- F.6.2 El extremo del espécimen no debe alejarse de la perpendicular con respecto al eje del espécimen por más de un grado, equivalente a 2.7 mm en 152.4 mm. Este requisito debe ser verificado en cada uno de los especímenes, usando un vernier y una escuadra.
- F.7 Contenido de vacíos de aire. Determine el contenido de vacíos de aire del espécimen de prueba de acuerdo con AASHTO T 269. Rechace los especímenes con vacíos de aire que difieran más de 0.5 por ciento de los vacíos de aire especificados.

Nota 3. Se puede ahorrar tiempo si los núcleos de los especímenes de prueba fueron saturados y los pesos sumergido y saturado y superficialmente seco fueron determinados inmediatamente o en un periodo corto después de la extracción. Luego se puede secar el espécimen de prueba en el horno toda la noche, se determina el peso seco al día siguiente y luego se preparan inmediatamente para el ensayo.

F.8 Replicas. El número de especímenes de prueba requeridos depende del número de mediciones de deformación axial hechas por espécimen y la exactitud deseada del módulo dinámico promedio. Se deben ensayar tres especímenes para obtener un límite en la exactitud deseada (por ejemplo, menor que ± 15 por ciento del módulo dinámico verdadero). La tabla 3 resume la exactitud estimada asociada con el número de especímenes.

Tabla 3. Exactitud estimada relacionada con el número de especímenes

LVDTs por espécimen	Número de especímenes	Límite estimado de exactitud
2	3	±15.0 %
2	4	±13.4 %
3	2	±13.1 %
3	3	±12.0 %
3	4	±11.5 %

F.9 Almacenamiento de las muestras. Si los especímenes no van a ser ensayados dentro de dos días, envolverlos en polietileno y almacenarlos en un cuarto de temperatura controlada a una temperatura entre 5 y 15°C. No apilar los especímenes para almacenarlos.

Nota 4. Para eliminar los efectos de envejecimiento en los resultados del ensayo, se recomienda que los especímenes sean almacenados no más de dos semanas antes del ensayo.

G. Instrumentación del espécimen de prueba.

G.1 Pegar con adhesivo epóxico los pines de montaje para los LVDT axiales, a los lados del espécimen. La figura 2 muestra un dispositivo para pegar los pines y la figura 3 muestra detalles del montaje de los pines y LVDT. Nota 5. Un epóxico de secado rápido, como el plastiacero de secado rápido (5 minutos), es adecuado para pegar los pines.

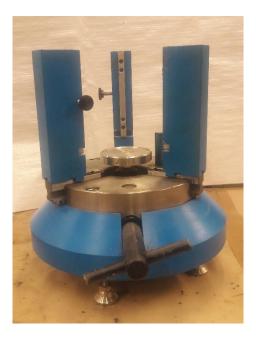


Figura 2. Dispositivo para pegar pines.

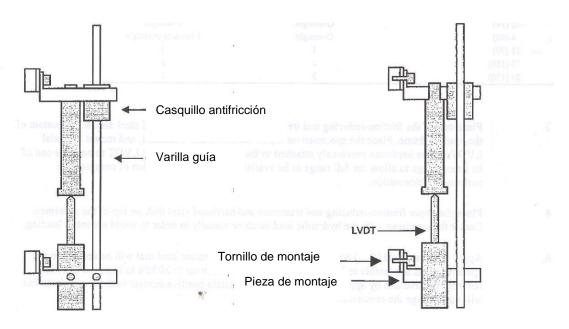


Figura 3. Detalle del montaje de los LVDTs

G.2 La longitud del LVDT para medir la deformación axial debe ser de 101.6 mm ± 1 mm. Utilizar un aparato para alinear y con el espaciamiento apropiado para facilitar el montaje del LVDT.

H. Procedimiento.

- H.1 Los ensayos para determinar la curva maestra deben realizarse a -10, 0, 10, 20, 30 y 40 °C y a frecuencias de carga de 0.1, 0.5, 1.0, 5 y 10 Hz para cada una de las temperaturas. Cada uno de los especímenes de prueba, individualmente instrumentado con LVDT, debe ser ensayado para cada una de las 30 combinaciones de temperatura y frecuencia de carga comenzando de la temperatura más baja a la más alta y de la frecuencia más baja a la más alta.
- H.2 Colocar el espécimen de prueba en la cámara de temperatura y permitir que se equilibre a la temperatura de prueba especificada ± 0.3°C. Usar un espécimen de monitoreo con un termocople montado en el centro para determinar el momento en que el espécimen alcanza la temperatura especificada de ensayo, figura 4. Los tiempos mínimos recomendados para que la temperatura se equilibre son proporcionados como una guía.

Figura 4. Espécimen con termocople para monitorear la temperatura del espécimen de ensayo.

Tabla 4. Tiempos de equilibrio recomendados

Temperatura del espécimen, °C	Tiempo, h
-10	Toda la noche
0	Toda la noche o 4
	horas
10	
20	4
30	4
40	

- H.3 Montar los Ivdt axiales en los pines previamente pegados al espécimen. Ajustar los LVDT al extremo de su rango lineal para permitir que el rango completo esté disponible para la deformación permanente a compresión acumulada.
- H.4 Colocar el disco de acero endurecido encima del espécimen; centrarlo visualmente con el actuador de carga con el propósito de evitar carga excéntrica.
- H.5 Aplicar una carga de contacto (P_{mín}) igual al cinco por ciento de la carga dinámica que será aplicada al espécimen. Es aceptable incrementar el esfuerzo de contacto aplicado hasta 20 KPa para mejorar la efectividad del control de la maquina aplicando una carga que mantendrá el contacto positivo con el espécimen, pero sin dañarlo.
- H.6 Ajustar y balancear el sistema de medición electrónico como sea necesario.
- H.7 Aplicar una carga (P_{dinámica}) sinusoidal (haversine) al espécimen, en forma cíclica. La carga dinámica debe ser ajustada para obtener deformaciones axiales entre 50 y 150 microdeformaciones.

Nota 6. La carga dinámica depende sobre todo de la rigidez del espécimen y los rangos generalmente están entre 70 y 2800 KPa. Para temperaturas frías se requieren cargas más altas. La tabla 5 presentan niveles de esfuerzo dinámico típicos basados en la temperatura.

Tabla 5 Niveles de esfuerzo dinámico típicos

Temperatura °C	Rango KPa
-10	1400-2800
0	900-1600
10	600-1200
20	350-700
30	200-400
40	70-140

H.8 Ensayar el espécimen de la temperatura más baja a la más alta; es decir, de -10°C a 40°C. Para cada una de las temperaturas, aplicar la carga de la frecuencia más baja a la más alta, es decir, de 0.1 a 10 Hz. Cargar el espécimen como es especificado en la tabla 6. El periodo de reposo entre cada una de las frecuencias es de cuatro minutos.

Tabla 6. Número de ciclos para la secuencia de ensayo

Frecuencia (Hz)	Número de ciclos
0.1	15
0.5	15
1.0	20
5.0	100
10.0	200

H.9 El espécimen debe ser desechado al final de cada serie de ensayos para cada uno de los periodos de temperatura. Si la deformación permanente no recuperable acumulada es mayor que 1500 micro unidades de deformación, reducir el nivel de esfuerzo a la mitad. Mantener los datos del ensayo hasta el siguiente periodo de reposo, desechar el espécimen, y usar uno nuevo para el resto de las frecuencias de ensayos bajo condiciones de carga reducida.

I. CÁLCULOS.

- I.1 Esta sección presenta los procedimientos para calcular el modulo dinámico, $IE^*(\omega)I$ y el ángulo de fase, δ (ω), usando datos de una frecuencia de carga específica, ω . También define mediciones de calidad de los datos que deben ser usadas con los límites de la sección J, para evaluar la confiabilidad de los datos de prueba.
- 1.2 La aproximación general usada aquí involucra el ajuste de mínimos cuadrados de una onda sinusoidal, como es descrito por Chapra y Canale en Métodos numéricos para ingenieros (McGraw Hill, 1985, pp 404-407). Se utiliza la regresión debido a que es fácil para la mayoría de los ingenieros y técnicos en la industria de pavimentos entenderla y aplicarla efectivamente. Esta aproximación es fácilmente llevada a cabo en una hoja de cálculo.
- Los datos obtenidos de cada uno de los ensayos de módulo dinámico a una frecuencia ω₀ son almacenados en forma de varios arreglos, uno para el tiempo (t_i), otro para el esfuerzo (σ_i) y otro para cada una de las deformaciones j=1,2,3...m de los transductores de deformación usados (ε_i). El número de i=1,2,3... n puntos en cada uno de los arreglos será igual y dependerá del número de datos recolectados por ciclo de carga y el número total de ciclos para cada uno de los cuáles los datos han sido recolectados.

Se recomienda que se utilicen 50 puntos por ciclo y 5 ciclos para un total de 250 datos.

- I.4 Análisis de datos de esfuerzo. El primer paso en el análisis es analizar los datos en el arreglo de esfuerzos. El análisis de datos es llevado a cabo en datos de esfuerzo central el cual es calculado del arreglo de datos de esfuerzo restando el esfuerzo promedio.
- I.4.1 Determinar el esfuerzo promedio como sigue:

$$\bar{\sigma} = \frac{\sum_{i=1}^{n} \sigma_i}{n}$$

donde

 $\bar{\sigma} = \text{esfuerzo promedio}$

σ i= esfuerzo en el punto i en el arreglo de datos

n= número de puntos en el arreglo de datos

1.4.2 Luego calcular el esfuerzo central restando el esfuerzo promedio de cada uno de las mediciones de esfuerzo:

$$\sigma_i' = \sigma_i - \bar{\sigma}$$

donde

σ = esfuerzo en el punto i en el arreglo de datos

 σ'_i = esfuerzo central en el punto i en el arreglo de datos

 $\bar{\sigma} = \text{esfuerzo promedio}$

I.4.3 De los datos de esfuerzo central, calcular los tres coeficientes de esfuerzo: desplazamiento, magnitud en la fase y magnitud fuera de fase.

$$A_{\sigma 0} = \frac{\sum_{i=1}^{n} \sigma_i'}{n} \tag{4}$$

$$A_{\sigma 1} = \frac{2}{n} \sum_{i=1}^{n} \sigma_i' cos(\omega_0 t_i)$$
 (5)

$$B_{\sigma 1} = \frac{2}{n} \sum_{i=1}^{n} \sigma_i' \operatorname{sen}(\omega_0 t_i)$$
 (6)

donde

 A_{σ_0} = coeficiente de esfuerzo de desplazamiento, kPa (psi)

A_{σ1}= magnitud del coeficiente de esfuerzo en fase, kPa (psi)

B_{σ1}= magnitud del coeficiente de esfuerzo fuera de fase, kPa (psi)

 $\sigma_i' = \text{esfuerzo central en el punto i en el arreglo de datos}$

ω₀= frecuencia del esfuerzo aplicado, rad/seg

ti= tiempo en el punto i en el arreglo de datos, s

I.4.4 De los coeficientes de esfuerzo, calcular la magnitud del esfuerzo y el ángulo de fase.

$$|\sigma^*| = \sqrt{A_{\sigma 1}^2 + B_{\sigma 1}^2} \tag{7}$$

$$\delta_{\sigma} = \arctan\left(-\frac{B_{\sigma 1}}{A_{\sigma 1}}\right) \tag{8}$$

donde

Iσ*l=magnitud del esfuerzo, kPa (psi)

 δ_{σ} = ángulo de fase, grados

Aσ₁= magnitud del coeficiente de esfuerzo en la de fase

B_{σ1}= magnitud del coeficiente de esfuerzo fuera de fase, kPa (psi)

1.4.5 Calcular un arreglo de los esfuerzos centrales estimados y el error estándar del esfuerzo aplicado.

$$\hat{\sigma}_i' = A_{\sigma 0} + A_{\sigma 1} \cos(\omega_0 t_i) \tag{9}$$

$$se(\sigma) = \sqrt{\frac{\sum_{i=1}^{n} (\hat{\sigma}_{i}' - \sigma_{i}')^{2}}{n-4} \left(\frac{100\%}{|\sigma^{*}|}\right)}$$
 (10)

donde

 $\hat{\sigma}_i'$ = esfuerzo central estimado en el punto i, kPa (psi)

se (σ)= error estándar para el esfuerzo aplicado, por ciento

 $A\sigma_0$ = coeficiente de esfuerzo de desplazamiento, kPa (psi)

 $A\sigma_1$ = magnitud del coeficiente de esfuerzo en fase, kPa (psi)

B_{σ1}= magnitud del coeficiente de esfuerzo fuera de fase, kPa (psi)

 σ'_i = esfuerzo central en el punto i en el arreglo de datos

ω₀= frecuencia del esfuerzo aplicado, rad/seg

ti= tiempo en el punto i en el arreglo de datos, s

Iσ*I=magnitud del esfuerzo, kPa (psi)

n= número de puntos en el arreglo de datos

- 1.5 Análisis de datos de deformación. El segundo paso en el análisis es llevar a cabo un análisis similar en los datos de cada uno de los transductores de deformación; sin embargo, en este caso los datos son corregidos para el retraso causado por la deformación permanente durante el ensayo, y los datos centrados la deformación promedio para el transductor.
- 1.5.1 Para estimar el desfase en los datos de deformación, buscar cada una de los arreglos de transductores de deformación y determinar los valores máximo y mínimo y el tiempo en que ocurrió para cada uno de los ciclos de carga. Luego determinar la pendiente del valor máximo y mínimo locales con respecto al tiempo usando regresión lineal. El promedio de estas dos pendientes es la velocidad de desfase D_j para el transductor de deformación j.
- 1.5.2 Determinar la deformación promedio de cada transductor como sigue:

$$\bar{\epsilon_j} = \frac{\sum_{i=1}^n \epsilon_{ji}}{n} \tag{11}$$

donde

 $ar{\epsilon}_{i}$ deformación promedio para el transductor j

 ϵ_{ii} = deformación para el transductor j en el punto i del arreglo

n= número de puntos en el arreglo de datos

I.5.3 Corregir y promediar los datos de deformación para cada uno de los transductores, restando de las deformaciones medidas los tiempos de la velocidad de desfase, el tiempo de carga y también restar la deformación promedio para dicho transductor:

$$\epsilon'_{ii} = \epsilon_{ji} - D_j t_i - \bar{\epsilon_j} \tag{12}$$

donde

 $\epsilon'_{ji} =$ deformación promedio y corregida para el transductor j en el punto i en el arreglo de datos

 $\epsilon_{ji} =$ deformación para el transductor j en el punto i en el arreglo de datos

ti= tiempo para el punto i en el arreglo de datos

 $\bar{\epsilon_i}$ = deformación promedio para el transductor j

Di= velocidad de ajuste del transductor i

I.5.4 De los datos de deformación promediados y corregidos para cada transductor, calcular los tres coeficientes de deformación: desplazamiento, magnitud en la fase y magnitud fuera de fase.

$$A_{\epsilon j0} = \frac{\sum_{i=1}^{n} \epsilon'_{ji}}{n} \tag{13}$$

$$A_{\epsilon j1} = \frac{2}{n} \sum_{i=1}^{n} \epsilon'_{ji} cos(\omega_0 t_i)$$
 (14)

$$B_{\epsilon j1} = \frac{2}{n} \sum_{i=1}^{n} \epsilon'_{ji} sen(\omega_0 t_i)$$
 (15)

donde

A∈jo= coeficiente de ajuste para el transductor de deformación j

A∈j1=magnitud del coeficiente en fase para el transductor de deformación j

 $B \in j1=$ magnitud del coeficiente fuera de fase para el transductor de deformación j $\epsilon'_{ji}=$ deformación central y corregida para el transductor j en el punto i en el arreglo de datos

t_i= tiempo para el punto i en el arreglo de datos ω₀= frecuencia del esfuerzo aplicado, rad/seg

I.5.5 De los coeficientes de deformación, calcular la magnitud de la deformación y el ángulo de fase para cada transductor.

$$\left|\epsilon_{j}^{*}\right| = \sqrt{A_{\epsilon j1}^{2} + B_{\epsilon j1}^{2}} \tag{16}$$

$$\delta_{\epsilon j1} = \arctan\left(-\frac{B_{\epsilon j1}}{A_{\epsilon i1}}\right) \tag{17}$$

donde

 $|\epsilon_i^*|$ =magnitud de la deformación para el transductor, j

 $\delta_{\epsilon j}$ = ángulo de fase para el transductor de deformación, grados

A∈j1=magnitud del coeficiente en fase para el transductor de deformación j

B∈j1= magnitud del coeficiente fuera de fase para el transductor de deformación j

I.5.6 Para cada uno de los transductores de deformación, calcular una matriz/fila de la deformación central y la corregida estimada y el error estándar de los datos de deformación.

$$\hat{\epsilon}'_{ji} = A_{\epsilon j0} + A_{\epsilon j1} \cos(\omega_0 t_i) + B_{\epsilon J1} sen(\omega_0 t_i)$$
 (18)

$$se(\epsilon_j) = \sqrt{\frac{\sum_{i=1}^{n} (\hat{\epsilon}'_{ji} - \epsilon'_{ji})^2}{n-4} \left(\frac{100\%}{\left|\epsilon_j^*\right|}\right)}$$
 (19)

donde

 $\hat{\epsilon}'_{ji}$ = deformación central corregida y estimada para el transductor de deformación j en el punto i

se(∈i)= error estándar para la respuesta del transductor j, por ciento

A∈j0= coeficiente de ajuste para el transductor de deformación j

A∈j1=magnitud del coeficiente en fase para el transductor de deformación j

 $B \in_{j1}$ = magnitud del coeficiente fuera de fase para el transductor de deformación j

 $\epsilon'_{ji} =$ deformación central y corregida para el transductor j en el punto i en el arreglo de datos

t⊫ tiempo para el punto i en el arreglo de datos

ω₀= frecuencia del esfuerzo aplicado, rad/seg

 $|\epsilon_i^*|$ =magnitud de la deformación para el transductor, j

n= número de puntos en el arreglo de datos

I.5.7 Calcular el ángulo de fase promedio, la magnitud de la deformación y la desviación estándar para todos los transductores de deformación m, con dos coeficientes de uniformidad que representan la variación entre la deformación de los transductores.

$$\bar{\delta_{\epsilon}} = \frac{\sum_{j=1}^{m} \delta_{\epsilon j}}{m} \tag{20}$$

$$|\bar{\epsilon}^*| = \frac{\sum_{j=1}^m \left| \epsilon_j^* \right|}{m} \tag{21}$$

$$se(\epsilon) = \frac{\sum_{j=1}^{m} se(\epsilon_j)}{m}$$
 (22)

$$U_{\epsilon} = \sqrt{\frac{\sum_{j=1}^{m} (\left|\epsilon_{j}^{*}\right| - \left|\epsilon^{*}\right|)^{2}}{m-1} \left(\frac{100\%}{\left|\epsilon^{*}\right|}\right)}$$
 (23)

donde

 $\bar{\delta}_{\epsilon}$ ángulo de fase promedio para todos los transductores de deformación, grados $|\epsilon^*|$ = magnitud de la deformación promedio

 $se(\epsilon) = error$ estándar promedio para todos los transductores de deformación, en por ciento

 U_{\in} = Coeficiente de uniformidad para los transductores de deformación, en porciento U_{δ} = Coeficiente de uniformidad para la fase, en porciento m= número de puntos en el arreglo de datos

I.6 Calcular el ángulo de fase y el modulo dinámico. El paso final en el análisis de datos es calcular el ángulo de fase general, $\delta(\omega)$, en grados, y el modulo complejo, $|E^*(\omega)|$, kPa (psi) para la frecuencia seleccionada, ω :

$$\delta(\omega) = \bar{\delta}_{\epsilon} - \delta_{\sigma} \tag{25}$$

$$|E^*(\omega)| = \frac{|\sigma^*|}{|\epsilon^*|} \tag{26}$$

donde

 $\delta(\omega)$ = ángulo de fase entre el esfuerzo aplicado y la deformación para la frecuencia ω , grados

 $|E^*(\omega)|$ = módulo dinámico para la frecuencia ω , kPa (psi)

 $\bar{\delta}_{\epsilon}$ = ángulo de fase promedio para todos los transductores de deformación, grados δ_{σ} = ángulo de fase del esfuerzo, grados

 $|\sigma^*|$ =magnitud del esfuerzo, kPa (psi)

 $|\epsilon^*|$ = magnitud de la deformación promedio

J. Calidad de los datos.

- J.1 Además del módulo dinámico y el ángulo de fase, un producto del análisis de datos son los siguientes cuatro indicadores de calidad: (1) la desviación estándar del esfuerzo aplicado, (2) la desviación estándar de las mediciones de deformación, (3) el coeficiente de uniformidad de las mediciones de deformación y (4) el coeficiente de uniformidad de las mediciones del ángulo de fase.
- J.2 Estos indicadores de la calidad de los datos deben ser usados para verificar la confiabilidad de los datos. La tabla 7 presenta los límites recomendados para los indicadores de calidad de los datos.

Tabla 7 Límites recomendados para los indicadores de calidad de los datos

Indicador	Símbolo	Ecuació n	Límite
error estándar del esfuerzo aplicado	se(σ)	9	≤ 10%
error estándar promedio de la medición de deformaciones	$se(\varepsilon)$	21	≤ 10%
coeficiente de uniformidad de las mediciones de deformación	U_{ϵ}	22	≤ 35%
coeficiente de uniformidad de las mediciones del ángulo de fase	U_δ	23	≤ 3 grados

Nota 8. Los límites recomendados están basados en la investigación concluida en el proyecto 9-29 NCHRP y quizá sean revisados en el futuro.

k. Reporte de resultados

- k.1 Reportar la siguiente información para cada uno de los especímenes para cada combinación de temperatura y frecuencia ensayada:
 - Temperatura del espécimen
 - Frecuencia del ensayo
 - Modulo dinámico (de la ecuación 7)
 - Angulo de fase promedio entre el esfuerzo aplicado y la deformación medida (ecuación 25)
 - Magnitud de la deformación promedio (ecuación 21)
 - Magnitud del esfuerzo (ecuación 7)

- Error estándar del esfuerzo aplicado (ecuación 10)
- Error estándar promedio de la medición de deformaciones (ecuación 22)
- Coeficiente de uniformidad para las mediciones de deformación (ecuación 23)
- Coeficiente de uniformidad para las mediciones del ángulo de fase (ecuación 24)

Anexo 2. Resultados de las pruebas de módulo dinámico.

Tabla 1A. Resultados probeta patrón.

Tabla 1A. Resultados					probeta patron.			
F	Т	Probeta patrón		U _δ < 3°	se _ε ≤ 10 %	Uε ≤ 35%	Er	
Hz	ပ္	E* (MPa)	δ (°)				με	
25.0	-10	2179	1.3	2.4	6.9	12.7	92	
10.0	-10	2186	0.6	1	7.9	9.4	90	
5.0	-10	2192	0.5	0.5	5.1	9.8	92	
1.0	-10	2187	0.3	0.3	3.5	9.7	90	
0.5	-10	2182	0.6	0.4	4	9.8	91	
0.1	-10	2176	0.7	0.4	4.3	10.1	91	
25.0	0	2172	1.1	1.8	6.4	11.7	91	
10.0	0	2173	0.8	0.6	6.4 7.5	8.3	91	
5.0	0	2187	0.4	0.7	4.4	9	92	
1.0	0	2182	0.5	0.6	3.9	8.9	90	
0.5	0	2184	0.5	0.4	3.9	8.8	90	
0.1	0	2175	0.5	0.6	4	9.4	92	
25.0	10	2172	1.0	2.1	7.3	9.7	92	
10.0	10	2188	1.0	1.1	7.6	6.6	90	
5.0	10	2200	0.5	1.3	6.3	6.6	92	
1.0	10	2195	0.6	0.6	5.2	6.3	90	
0.5	10	2189	0.6	0.7	4.7	6.3	90	
0.1	10	2185	0.6	0.4	5.2	6.5	91	
25.0	20	2180	1.8	2.7	8.3	6.2	92	
10.0	20	2203	1.4	2.1	9	4.4	89	
5.0	20	2215	1.3	1.8	6.5	3.7	91	
1.0	20	2189	1.8	1.7	8	3.4	90	
0.5	20	2196	1.6	1.3	7.5	4	90	
0.1	20	2190	1.0	1.3	5.9	4.7	91	
25.0	30	2161	1.2	2.6	5.7	7.1	94	
10.0	30	2193	0.7	1.5	6.5	7.3	91	
5.0	30	2198	0.6	1.3	3.4	6.8	92	
1.0	30	2196	0.8	1.1	1.4	7.2	90	
0.5	30	2193	0.8	1.1	1.5	7.3	90	
0.1	30	2187	0.8	1	1.5	7.4	91	
25.0	40	2169	1.0	2.7	6.1	8	94	
10.0	40	2203	0.6	1.6	6.5	7.3	90	
5.0	40	2208	0.6	1.4	3.3	6.8	91	
1.0	40	2207	0.8	0.9	1.9	6.9	89	
0.5	40	2202	0.8	1	1.6	6.9	90	
0.1	40	2198	1.0	0.8	2.3	6.8	91	

Tabla 2A Espécimen 117 (AASHTO T 342-11)

Temperatura	Frecuencia	E*	δ	Uδ	seε	Uε	٤r
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤ 35%	με
-10	10	26369	4.4	0.9	6.3	30.6	71
-10	5	25707	4.5	0.7	5.8	30.1	67
-10	1	23420	5.5	0.7	2.6	30.4	66
-10	0.5	22459	5.6	0.6	2.7	30.6	64
-10	0.1	20035	7	0.7	2.7	30.7	67
4	25	19941	9.7	2.2	6	3.9	66
4	10	18561	9.6	1.1	6.3	8.3	58
4	5	17352	10	0.8	3.8	9.2	60
4	1	14377	12	0.6	3.5	10.4	65
4	0.5	13131	13.2	0.4	3.7	11	64
4	0.1	10375	15.8	0.8	3.8	10.7	67
21	25	10646	18	2.2	6.8	4.2	76
21	10	9224	18.5	1.9	8.9	6.4	74
21	5	8097	19.5	1.6	5.3	7.8	74
21	1	5604	23	1.7	4	9.1	87
21	0.5	4704	24.7	2	3.9	12.5	84
21	0.1	3154	26.3	2.4	3.7	18.1	84
37	25	4750	25.4	1.9	5.9	27	88
37	10	3765	26.3	1.7	7.4	29.1	92
37	5	2958	26.7	2.1	4.1	30	85
37	1	1705	29.4	2.8	2.6	31.9	86
37	0.5	1345	29.8	3.1	2.7	31.5	87
37	0.1	791	28.9	4	3	29.4	88
54	25	1632	28.9	3.2	6.1	36.3	101
54	10	1084	29.2	3.7	7.7	30.9	110
54	5	834	29	4.2	6.3	28.3	100
54	1	470	27.9	3.8	4.4	30	109
54	0.5	372	26.9	3.7	4.4	31.2	102
54	0.1	239	22.9	3.3	4.8	30.3	103

Tabla 3A Espécimen 34 (AASHTO T342-11)

Temperatura °C	Frecuencia	E*	δ ° C	Uδ	se _ε	Uε	εr
C	Hz	MPa	,0	< 3°	≤ 10 %	≤ 35%	με
-10	10	24206	5.5	0.3	6	6.1	77
-10	5	23305	5.8	0.2	4.9	6.7	71
-10	1	20879	6.8	0.3	1.7	6.7	74
-10	0.5	19830	7.1	0.1	2	6.5	72
-10	0.1	17385	8.4	0	1.8	5.7	77
4	10	16479	10.7	0.4	6.2	8.1	66
4	5	15327	11.3	0.4	2.7	9.3	68
4	1	12472	13.3	0.4	2.5	9.9	75
4	0.5	11241	14.4	0.3	2.2	10.7	74
4	0.1	8784	17.1	0.7	2.1	12.5	79
21	10	7482	21.1	1	6.2	14.4	92
21	5	6429	22.4	1.3	4.3	16.1	93
21	1	4301	25.5	1.2	3	17.9	114
21	0.5	3524	26.7	1.3	3.2	18.2	112
21	0.1	2267	27	1.6	3.9	17.9	117
37	10	2993	29	1.8	6.9	6.1	114
37	5	2446	28.8	0.7	5.2	8.9	103
37	1	1421	30	0.5	4.2	16.6	104
37	0.5	1116	29.8	0.3	4.5	21.4	106
37	0.1	646	27.8	0.4	4.7	32.2	107
54	10	796	28.4	2.9	7.7	7.8	82
54	5	613	27.7	2.7	7	9.8	109
54	1	321	27.4	1.4	5.6	18.3	116
54	0.5	253	26.9	0.7	5.7	21.8	119
54	0.1	156	22.7	1.2	11.5	47.7	126

Tabla 4A Espécimen 117 (Procedimiento IMT)

Temperatura °C	Frecuencia	E* MPa	δ ° C	U _δ < 3°	seσ ≤ 10 %	se _ε ≤10 %	Uε ≤ 35%	٤r
	Hz	iiii a		7 5	2 10 /0	≥ 10 / ₀	3370	με
-10	0.1	21136	7.2	0.5	0.5	3.1	13.5	63
-10	0.5	23665	6.2	0.5	0.4	4.2	13.5	61
-10	1.0	24594	5.9	0.2	0.4	4.7	13.5	63
-10	5.0	26741	5	0.7	2.3	4.1	12.4	62
-10	10.0	27356	4.9	0.8	6.1	7	12.1	68
4	0.1	10786	15.2	0.5	0.2	4	13.5	69
4	0.5	13481	12.9	0.3	1.5	4.4	12.5	65
4	1.0	14735	11.6	0.3	0.8	4.8	12.6	64
4	5.0	17408	10.3	0.9	2	5.4	11.3	62
4	10.0	18491	9.5	0.9	6.5	8	10	61
21	0.1	3150	26.1	2.3	0.3	3.7	28.7	85
21	0.5	4739	23.7	1.5	2	4.1	22.1	83
21	1.0	5607	22.2	0.9	1.3	4	18.2	87
21	5.0	7986	18.7	1	2.6	4.5	15.6	75
21	10.0	9055	17.5	0.9	6.4	6.3	11.8	76
37	0.1	729	29.4	4.1	0.4	3.9	32.1	95
37	0.5	1289	29.5	3.4	0.5	3.8	33.4	91
37	1.0	1650	28.9	3	0.5	4.1	32.9	88
37	5.0	2856	27	2.5	2.7	5.8	29.7	87
37	10.0	3546	27	2.3	8.4	7.5	29.5	98
54	0.1	228	22.7	4.8	0.9	5.4	32.8	108
54	0.5	362	26.7	5.2	0.8	4.8	31.6	105
54	1.0	472	27.2	5.4	0.7	5	32	108
54	5.0	834	28.7	4.9	4.2	6.2	30.5	100
54	10.0	1093	29.4	4.3	6.3	8.5	35.0	110

Tabla 5A. Espécimen 34 (procedimiento IMT)

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	0.1	16262	8.6	0.5	1	2.6	16.5	82
-10	0.5	18540	7.5	0.4	1.5	2.7	16.6	77
-10	1.0	19468	7.1	0.1	0.4	2.7	16.3	79
-10	5.0	21696	6.2	0.4	2.2	2.7	15.9	76
-10	10.0	22642	5.5	0.5	6	5.9	15.7	82
4	0.1	7902	18.3	0.3	0.1	2.3	14.7	94
4	0.5	10276	15.9	0.5	1.5	2.6	13.6	86
4	1.0	11331	14.6	0.5	0.8	2.4	13.7	83
4	5.0	14174	12.2	0.6	2	3.4	13.3	76
4	10.0	15326	11.8	0.9	5.1	4.6	12.2	74
21	0.1	2278	29.8	1.4	0.4	4.1	20.5	79
21	0.5	3622	27.3	1.1	0.3	3.2	20.6	95
21	1.0	4341	25.7	1	1.8	3.6	19.6	101
21	5.0	6433	22.1	0.8	2.6	4.3	18.3	86
21	10.0	7496	21.1	0.6	6.9	6.5	17	84
37	0.1	609	31	4.0	1.2	4.9	24.7	81
37	0.5	1116	30.6	2.8	0.7	4.5	19.2	87
37	1.0	1448	30	2.4	0.8	4.8	17.8	87
37	5.0	2454	28.5	2.4	2.9	6.4	15.7	81
37	10.0	2918	28.6	2.2	7	7.8	14.4	84
54	0.1	204	24.7	7.9	1.8	7	64.1	87
54	0.5	330	26.5	5.9	0.9	5.2	38.9	101
54	1.0	424	26.9	4.6	1	6.5	28.8	107
54	5.0	796	27.5	3.8	4.2	11.1	8.5	93
54	10.0	939	28.4	2.1	6.3	8.2	8.6	115

Uε Coeficiente de uniformidad de la deformación

SE_ε Error estándar de la deformación

 $U_\delta \quad \text{Coeficiente de uniformidad}$

δ Ángulo de fase

[|] E* | Módulo dinámico.

Tabla 6A Espécimen 16 (Procedimiento IMT)

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10	≤10	≤ 35%	με
					%	%		
-10	0.1	21603	9.6	0.5	0.7	3.3	2.3	62
-10	0.5	24818	8.5	0.5	0.4	3.1	3.1	58
-10	1.0	25888	8.7	0.8	0.3	5.7	2.9	60
-10	5.0	28947	7.4	0.7	2.3	2.8	3.7	59
-10	10.0	30058	7.2	1.1	5.8	5.9	2	62
0	0.1	13240	16	1.8	1	2.1	6.1	71
0	0.5	16346	13.7	1.9	1.4	2.5	7.5	63
0	1.0	17710	13.2	1.5	0.5	3.6	7.9	65
0	5.0	21141	11.6	1.7	2.2	4	8.1	60
0	10.0	22462	10.9	1.6	5.2	5.5	7.2	62
10	0.1	6437	23.8	2.5	0.2	3.2	7.9	61
10	0.5	8920	20.7	2.2	0.6	5.1	8	55
10	1.0	10088	19.2	2.2	1.3	3.9	6.6	58
10	5.0	13301	16.8	2.3	2.9	4.2	7.6	53
10	10.0	14606	15.4	1.9	6.4	6.9	7.6	54
20	0.1	2830	29.2	0.9	0.4	3.5	6.2	70
20	0.5	4324	26.5	1.4	0.7	3.1	5.9	68
20	1.0	5094	25.1	1.1	1.8	3.3	5.4	76
20	5.0	7383	21.8	1.2	2.9	4.2	5.7	68
20	10.0	8368	20.4	0.9	6.7	6.8	6.2	70
30	0.1	1308	29.9	1.2	0.5	4.7	5.3	57
30	0.5	2141	28.8	0.7	0.9	4.1	5.3	69
30	1.0	2602	27.6	1.3	1.1	4.5	7.3	75
30	5.0	4046	25.1	1.8	2.6	5.7	10.8	61
30	10.0	4707	24.3	2.5	7.9	9.8	11.7	62
40	0.1	619	26.7	0.9	0.8	5.8	14.2	56
40	0.5	995	28.3	0.3	0.7	5.4	11.5	63
40	1.0	1235	28.1	0.7	0.5	4.5	10.8	57
40	5.0	1989	28.1	1.4	3.5	4.7	9.7	59
40	10.0	2413	27.9	2.1	6	5.9	11.9	63

Tabla 7A Espécimen 35 (Procedimiento IMT)

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	0.1	16568	8.3	0.6	0.9	4.5	18.2	87
-10	0.5	18871	7.9	0.3	1.1	5.6	18.3	82
-10	1.0	19919	7	0.7	0.3	3.2	17.8	83
-10	5.0	22255	6.1	1.5	2.4	4.9	17.1	81
-10	10.0	23253	5.8	0.6	6.5	6.4	16.4	85
0	0.1	10557	14.2	1.1	0.1	3.3	12.8	94
0	0.5	13070	12	1.1	1.4	3.4	12.6	83
0	1.0	14169	11.2	0.9	0.4	3.3	12.5	84
0	5.0	16794	9.8	0.9	2	4.6	11.5	78
0	10.0	17891	9	0.7	5.3	5.8	11.6	81
10	0.1	5709	21.3	1.6	0.2	3.1	12.3	86
10	0.5	7786	18.5	1.5	1	4.1	10.2	76
10	1.0	8724	17.5	1.5	1.3	4.6	8.2	79
10	5.0	11298	14.3	1.4	2.6	5.8	6.9	70
10	10.0	12323	13.4	0.7	7.2	7.4	6.2	71
20	0.1	2370	27.8	1.6	0.3	3.6	20	75
20	0.5	3684	25.2	1.8	0.3	3.3	18.5	67
20	1.0	4447	23.7	1.6	0.5	3	13.8	77
20	5.0	6524	19.9	1	2.4	4.9	9.3	69
20	10.0	7421	19.2	0.7	7.2	7	7.2	65
30	0.1	1089	28.6	1.5	0.4	4.9	13.4	91
30	0.5	1894	27.5	1.9	0.6	5	14.9	101
30	1.0	2332	26.6	1.7	1	4.7	13.8	105
30	5.0	3590	24.2	1.4	2.3	5.3	11.1	99
30	10.0	4223	23.7	1	7.3	7.6	8.7	91
40	0.1	453	28	1.1	0.9	5.9	20.6	98
40	0.5	784	28.9	1	0.5	5.7	18.6	93
40	1.0	1058	27.9	1.7	0.6	7.6	17.6	92
40	5.0	1795	26.9	2.3	2.9	8.4	13.7	91
40	10.0	2128	27.6	1.9	5.8	7.7	13.6	89

Tabla 8A Espécimen 16 (Procedimiento IMT)

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	10.0	26964	6.7	1.2	5.9	5.8	7.4	62
-10	5.0	25850	7.2	1.2	2.5	2.9	7.9	58
-10	1.0	23201	8.1	1.2	0.3	1.7	7	60
-10	0.5	22046	8.7	1.4	0.7	2	6.8	59
-10	0.1	19180	9.9	1.4	0.8	3.4	5.6	62
0	10.0	20771	10.6	1.6	4.9	6.4	7.8	71
0	5.0	19386	11.3	1.5	2	3.2	9	63
0	1.0	16096	13.3	1.2	0.6	2.3	6.8	65
0	0.5	14792	14.1	1.3	1.4	2.3	7.1	60
0	0.1	11592	16.3	1	0.1	1.9	8.1	62
10	10.0	13452	15.3	1.6	5.8	6.2	13.6	61
10	5.0	12160	16.6	1.6	2.3	3.4	14.7	55
10	1.0	9158	19.1	0.9	1.2	2.9	15.1	58
10	0.5	7988	20.6	1.1	0.7	2.7	15.8	53
10	0.1	5699	22.9	1.2	0.2	2.6	17.3	54
20	10.0	8354	19.8	0.8	6.3	6.9	12.7	70
20	5.0	7219	21.4	0.9	2.3	4.5	15.1	68
20	1.0	4904	24.5	1.1	1.1	2.6	16.5	76
20	0.5	4086	26.3	1.7	1.4	2.6	18.4	68
20	0.1	2650	27.4	1.6	0.3	2.6	16.4	70
30	10.0	4624	24.6	2.4	7.3	7	14.7	57
30	5.0	3853	25.5	2.3	2.6	4.6	13.4	69
30	1.0	2385	27.5	1.5	0.6	3.6	13.1	75
30	0.5	1900	28.4	1.4	0.7	3.3	10.4	61
30	0.1	1119	28.9	1.9	0.5	2.8	4.7	62
40	10.0	2414	28.3	2.2	5.7	6.3	11.2	56
40	5.0	1932	28.5	1.3	3.9	5.6	10.6	63
40	1.0	1093	29.1	0.6	0.5	2.5	15.1	57
40	0.5	871	28.6	1.2	0.7	2.7	16.4	59
40	0.1	524	26.7	2.1	0.8	2.9	17.9	63

Tabla 9A Espécimen 35 (AASHTO T 342-11)

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	10.0	20559	5.4	0.5	6.1	5.9	30.5	91
-10	5.0	19789	6	0.6	2.3	3.2	30.5	86
-10	1.0	17764	6.7	0.5	0.3	2.8	30.4	87
-10	0.5	16904	7.2	0.8	0.8	4.2	30.2	85
-10	0.1	14856	8.5	0.8	0.8	3.2	29.2	90
0	10.0	16220	8.7	0.6	5.1	5	24.3	86
0	5.0	15195	9.6	1	2	3.4	24.1	84
0	1.0	12727	11.1	0.8	0.6	2.7	24.4	90
0	0.5	11698	12.2	0.9	1.6	2.8	23.9	88
0	0.1	9397	14.7	1	0.1	2.5	22.5	100
10	10.0	11132	13.7	0.7	5.7	6.4	17.5	75
10	5.0	10119	14.3	0.8	2.3	4.9	18	74
10	1.0	7701	17.4	1.4	2.5	3.8	18	82
10	0.5	6746	18.7	1.7	0.5	3.5	18.4	81
10	0.1	4936	21.3	1.4	0.2	3.5	18	90
20	10.0	6868	19.5	1.4	7.5	7.6	20.8	70
20	5.0	6012	20.4	1.8	2.5	5.1	20.2	75
20	1.0	4054	24.4	2.2	0.5	3.2	21.5	85
20	0.5	3365	25.6	2.5	0.3	3.2	24.4	73
20	0.1	2199	27.5	2.4	0.3	3.4	22.4	81
30	10.0	4275	24	0.9	6.9	6.6	15.9	68
30	5.0	3594	24.6	1	2.6	5.1	17.6	70
30	1.0	2260	27.6	1.4	0.4	3.6	18.6	87
30	0.5	1801	28.3	1.5	0.4	3.7	18.1	82
30	0.1	1052	28.8	1.1	0.6	4.5	17.1	71
40	10.0	2361	27.8	2.4	5.7	6.8	16.4	85
40	5.0	1968	27.5	2.6	3.3	7.8	18	76
40	1.0	1085	29.7	2	0.5	3.6	18.4	89
40	0.5	869	29.7	2.2	0.5	4.2	19.5	90
40	0.1	535	28.1	2.5	0.6	5	22.7	92

Tabla 10 A.Resultados del laboratorio 1

Temperatura °C	Frecuencia Hz	ω _r F*a ⊤	E* MPa	δ	E₁ MPa	E ₂ MPa
-10	10	17500	20130	24.6	18303	8380
-10	5	8750	20661.5	23.8	18904	8338
-10	1	1750	17941.5	23.7	16428	7212
-10	0.5	875	16936	22.9	15601	6590
-10	0.1	175	14473	22.7	13352	5585
0	10	100	12000	25.8	10804	5223
0	5	50	11248	24.8	10211	4718
0	1	10	9326	25.2	8438	3971
0	0.5	5	7809	24.9	7083	3288
0	0.1	1	6259	25.1	5668	2655
10	10	30	9664	26.5	8649	4312
10	5	15	8557	25.7	7711	3711
10	1	3	6326	25.5	5710	2723
10	0.5	2	5371	25.7	4840	2329
10	0.1	0	3959	26.1	3555	1742
20	10	10	8997	51.5	5601	7041
20	5	5	7665	52.7	4645	6097
20	1	1	5464	55.5	3095	4503
20	0.5	0.5	4757	60.7	2328	4148
20	0.1	0.1	3500	62.1	1638	3093
30	10	2.97	7230	81.5	1069	7151
30	5	1.49	5670	82.7	720	5624
30	1	0.30	3583	89.5	31	3583
30	0.5	0.15	3245	97.7	-435	3216
30	0.1	0.03	2109	100.1	-370	2076
40	10	0.074	2971	92.5	-130	2968
40	5	0.037	2217	93.7	-143	2212
40	1	0.007	1320	95.4	-124	1314
40	0.5	0.004	1108	94.2	-81	1105
40	0.1	0.001	1098	95.1	-98	1094

Tabla 11.A Resultados del laboratorio 2

Temperatura °C	Frecuencia Hz	ω _r F*a ⊤	E* MPa	δ	E₁ MPa	E ₂ MPa
-10	10	842918	19265	3.3	19233	1112
-10	5	421459	18656	5.3	18576	1727
-10	1	84292	17161	6.1	17065	1812
-10	0.5	42146	16466	6.3	16366	1815
-10	0.1	8429	14819	7.2	14701	1865
0	10	10406	15325	8.2	15168	2186
0	5	5203	14403	8.2	14255	2057
0	1	1041	12521	9.3	12358	2013
0	0.5	520	11668	9.7	11503	1956
0	0.1	104	9953	11.1	9766	1918
10	10	274	11105	13.7	10789	2632
10	5	137	10090	12.9	9835	2253
10	1	27	8139	14.9	7864	2097
10	0.5	14	7324	15.8	7047	1995
10	0.1	3	5692	18.6	5394	1817
20	10	10	7104	22.3	6574	2693
20	5	5	6268	20.0	5889	2146
20	1	1	4477	21.7	4160	1654
20	0.5	0.5	3850	22.6	3554	1480
20	0.1	0.1	2770	26.3	2484	1226
30	10	0.60	4130	27.8	3653	1927
30	5	0.30	3502	26.4	3137	1557
30	1	0.06	2275	27.1	2025	1036
30	0.5	0.03	1916	27.7	1697	889
30	0.1	0.01	1326	31.1	1136	684
40	10	0.040	2181	23.8	1996	880
40	5	0.020	1826	24.8	1658	765
40	1	0.004	1162	26.8	1037	525
40	0.5	0.002	993	27.8	879	463
40	0.1	0.000	761	30.3	657	384

Tabla 12A Resultados del laboratorio 3

Temperatura °C	Frecuencia Hz	ω _r F*a ⊤	E* MPa	δ	E₁ MPa	E ₂ MPa
-10	10	174137	19318	7.1	19170	2388
-10	5	87069	18438	7.7	18272	2470
-10	1	17414	16157	8.7	15971	2444
-10	0.5	8707	15272	8.9	15088	2363
-10	0.1	1741	12925	10.6	12704	2378
0	10	2495	14106	10.6	13865	2595
0	5	1248	13147	11.2	12897	2554
0	1	250	10835	13.3	10544	2493
0	0.5	125	9869	14.2	9567	2421
0	0.1	25	7757	16.8	7426	2242
10	10	111	9103	15.7	8763	2463
10	5	56	8145	17	7789	2381
10	1	11	5966	20.2	5599	2060
10	0.5	6	5153	21.9	4781	1922
10	0.1	1	3592	24.6	3266	1495
20	10	10	5622	21.2	5242	2033
20	5	5	4820	22.3	4460	1829
20	1	1	3147	26.4	2819	1399
20	0.5	0.5	2514	28.7	2205	1207
20	0.1	0.1	1538	30.4	1327	778
30	10	1.07	3024	26.2	2713	1335
30	5	0.54	2537	26.3	2274	1124
30	1	0.11	1559	28.1	1375	734
30	0.5	0.05	1208	28.9	1058	584
30	0.1	0.01	718	28.2	633	339
40	10	0.135	1726	30.3	1490	871
40	5	0.068	1437	29.1	1256	699
40	1	0.014	810	28.1	715	382
40	0.5	0.007	625	27.7	553	291
40	0.1	0.001	336	24.7	305	140

Tabla 13A Réplica 1

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	10.0	28572	5.1	0.2	6.6	6.9	24.2	69
-10	5.0	27695	5.7	0.3	2.5	3.6	25.3	65
-10	1.0	25139	6.6	0.1	0.3	4.6	27	65
-10	0.5	23941	6.9	0.1	0.9	3.5	27.4	65
-10	0.1	20991	8.2	0.2	0.8	2.8	27.7	69
0	10.0	20950	8.7	0.4	5.9	8.1	16.9	69
0	5.0	19720	9.6	1.3	2	7.5	18.5	67
0	1.0	16597	11.3	0.2	0.5	5.6	20.8	72
0	0.5	15177	12.4	1.3	1.6	6.2	20.4	71
0	0.1	12193	15.3	0.8	0.1	4.8	21.2	81
10	10.0	13415	13.8	0.2	5.5	6.7	16.2	63
10	5.0	12257	14.6	0.3	2.2	4.6	19.8	62
10	1.0	9248	18.3	0.7	2.3	4.3	21.5	70
10	0.5	8110	19.4	1.6	0.3	4.1	24.2	68
10	0.1	5762	22.6	1.4	0.2	3.8	26.5	79
20	10.0	8330	19.1	0.4	8.4	7.8	19.7	69
20	5.0	7211	20.6	1	2.5	4.8	23.3	76
20	1.0	4836	24.5	1.7	2.5	4.2	29.1	80
20	0.5	3974	26.2	2.1	0.8	3.6	32.8	81
20	0.1	2421	28.9	2.6	0.4	3.4	38.1	82
30	10.0	4195	25.9	0.5	7.6	7.7	18.4	92
30	5.0	3479	26.5	1.5	2.5	5.5	21.8	101
30	1.0	2074	28.7	1.8	0.5	4	28	118
30	0.5	1553	30.2	2.2	0.5	3.7	33.7	110
30	0.1	840	29.9	2.2	0.4	4	34.6	106
40	10.0	2046	29.8	2.7	6.4	6.4	34.0	93
40	5.0	1659	29.3	2.6	3.3	6	34.6	99
40	1.0	927	29.2	2.1	0.5	3.8	34.1	103
40	0.5	711	29	1.7	0.5	4.5	32.7	102
40	0.1	399	26.9	1	0.7	7.8	23.5	87

Tabla 14A. Réplica 2

Temperatura	Frecuencia	E*	δ	Uδ	seσ	seε	Uε	εr
°C	Hz	MPa	°C	< 3°	≤ 10 %	≤10 %	≤ 35%	με
-10	10.0	27815	5.3	0.2	6.5	7	16	71
-10	5.0	26879	5.7	0.1	2.5	3.8	16.9	68
-10	1.0	24179	6.6	0.3	0.4	2	16.2	68
-10	0.5	23101	7.4	0.5	0.7	2.3	15.9	67
-10	0.1	20266	8.5	0.2	0.7	2	15.7	71
0	10.0	20868	9.1	0.2	6.1	5.9	16.9	69
0	5.0	19641	9.6	0.3	2.6	3.3	17.8	68
0	1.0	16330	11.8	0.4	0.6	1.9	16.4	73
0	0.5	15014	13.2	0.5	1.2	2.2	15.9	72
0	0.1	11949	15.5	0.7	0.1	1.9	14.9	83
10	10.0	14707	13.4	0.6	6.5	6.6	17.6	60
10	5.0	13415	14.6	0.8	2.6	4.2	19.4	59
10	1.0	10165	18.2	1.1	0.9	3.1	17.9	68
10	0.5	8940	18.8	1	1.6	4	18.6	66
10	0.1	6427	21.9	1.3	0.3	4.5	18.8	77
20	10.0	8462	19.5	1.1	6.7	7	17.9	75
20	5.0	7354	21	1.5	2.6	4.6	19.1	82
20	1.0	5041	24.6	2	2.3	5	20.2	87
20	0.5	4208	26.2	2.3	0.9	4.7	22.7	89
20	0.1	2713	28.7	3.5	0.3	4	31.4	91
30	10.0	4690	24.7	2.1	8.3	8.3	26.6	82
30	5.0	3930	25.7	2.1	2.8	5.1	28.5	90
30	1.0	2468	28	1.9	0.6	3.4	33.1	99
30	0.5	1937	29.1	1.7	0.6	2.9	34.9	99
30	0.1	1131	29.3	1.5	0.4	3.6	34.9	97
40	10.0	2246	29.6	2.3	7	6.8	33.7	85
40	5.0	1834	29.1	2.4	3.1	5.6	35.0	88
40	1.0	1046	29	2.2	0.5	4.6	34.5	91
40	0.5	806	29.1	1.9	0.7	3.8	33.8	90
40	0.1	488	26.4	0.9	0.7	3.9	26.7	91

Km 12+000 Carretera Estatal 431 "El Colorado-Galindo" Parque Tecnológico San Fandila Mpio. Pedro Escobedo, Querétaro, México CP 76703 Tel +52 (442) 216 9777 ext. 2610 Fax +52 (442) 216 9671

publicaciones@imt.mx

http://www.imt.mx/

Esta publicación fue desarrollada en el marco de un sistema de gestión de calidad certificada bajo la norma ISO 9001:2015